
University of Amsterdam

Master Thesis

Explaining relationships between entities

Author:

Nikos Voskarides

Supervisors:

Dr. Edgar Meij,

Dr. Manos Tsagkias

A thesis submitted in fulfilment of the requirements

for the degree of Master’s of Science in Artificial Intelligence

November 2014

Acknowledgements

I would like to thank my daily supervisor Edgar Meij for his support and encouragement

throughout this thesis. Our numerous discussions and his feedback were always insightful

and inspiring.

Many thanks to my co-supervisor Manos Tsagkias for giving useful feedback that helped

to improve the quality of this work. His support and advice have been invaluable for me

during the last two years.

I would like to express my gratitude to Maarten de Rijke for giving me the opportunity

to work on interesting research problems with him and other exciting people.

Thanks to all ILPS members and especially Anne Schuth, Daan Odijk and Wouter

Weerkamp for supporting me.

I thank Yahoo for providing the data used in this work and especially the Semantic

Search research group in Barcelona.

Also, I thank Henk Zeevat and Maarten de Rijke for agreeing to be members of the

examination committee.

Finally, I would like to thank my parents and my brothers for their endless support.

i

Abstract

Modern search engines are increasingly aiming to understand users’ intent in order to

answer information needs more effectively by providing richer information than the tra-

ditional “ten blue links”. This information might include context about the entities

present in the query, direct answers to questions that concern entities and more. A re-

cent trend when answering queries that refer to a single entity is providing an additional

panel that contains some basic information about the entity, along with links to other

entities that are related to the initial entity. A problem that remains largely unexplored

is how to provide an explanation of why two entities are related. In this work, we study

the problem of explaining pre-defined relations of entity pairs with natural language

sentences in the context of search engines. We propose a method that first extracts

sentences that refer to each entity pair and then ranks the sentences by how well they

describe the relation between the two entities. Our ranking module combines a rich set

of features using state-of-the-art learning to rank algorithms. We evaluate our method

on a dataset of entities and relations used by a commercial search engine. The exper-

imental results demonstrate the effectiveness of our method, which can be efficiently

applied in a search engine scenario.

Contents

1 Introduction 1

1.1 Research Questions . 4

1.2 Contributions . 5

2 Related work 6

2.1 Semantic search . 6

2.2 Sentence retrieval . 8

2.3 Question answering . 9

2.4 Relation extraction . 10

2.5 Learning to rank . 11

2.5.1 Pointwise methods . 11

2.5.2 Pairwise methods . 13

2.5.3 Listwise methods . 14

3 Method 16

3.1 Extracting sentences . 17

3.1.1 Sentences enrichment . 17

3.1.1.1 Co-reference resolution 17

3.1.1.2 Entity linking . 18

3.2 Ranking sentences . 19

3.2.1 LTR framework . 20

3.2.2 Features . 21

3.2.2.1 Text features . 21

3.2.2.2 Entity features . 23

3.2.2.3 Relation features . 24

3.2.2.4 Source features . 26

4 Experimental setup 27

4.1 Dataset . 27

4.1.1 Entity pairs . 27

4.1.2 Sentences preprocessing . 28

4.1.3 Wikipedia . 28

4.2 Annotations . 28

4.3 Evaluation metrics . 29

4.4 LTR algorithms . 30

5 Results and discussion 32

iii

Contents iv

5.1 Baselines . 32

5.2 Full machine learning model . 34

5.2.1 Comparison to the baselines . 34

5.2.2 Insights & error analysis . 35

5.2.3 Parameter settings . 38

5.3 Feature analysis . 40

5.3.1 Per feature type performance . 40

5.3.2 Per feature unit performance . 41

5.3.3 Features calculation cost . 45

5.4 Machine learning algorithms . 46

5.5 Comparison to a competitive system . 47

5.5.1 Dataset . 48

5.5.1.1 Entity pairs . 48

5.5.1.2 Annotation . 48

5.5.2 Results and analysis . 49

6 Conclusion and future work 53

Bibliography 56

Chapter 1

Introduction

Commercial search engines are moving towards incorporating semantic information in

their result pages. Examples include answering specific questions (e.g. “Barcelona

weather”, “who built the Eiffel tower”) and presenting entities related to a query (e.g.

the tennis player for the query “Roger Federer”), usually in a condensed version. This

changes the way users traditionally interact with search results pages, as the information

need might be satisfied by observing the provided information only, without having to

observe the traditional web page results.

Recent work has focused on devising methods that provide semantically enriched search

results [8, 31, 76]. In order to be able to provide the users with the right information, it is

necessary to understand the semantics of the query. An analysis conducted in [50] showed

that 71% of queries contain entities, a result which motivates research in recognizing

and identifying entities in queries [50, 84]. Semantic information for entities is usually

obtained from external structured data sources (i.e. knowledge bases). Deciding which

data source is relevant to the query requires understanding the query intent and several

methods have been proposed recently that try to tackle this problem [24, 58, 74, 107, 131].

Major commercial search engines, including Google,1 Microsoft and Yahoo, identify

and link entities in queries to a knowledge base and provide the user with context

about the entity he/she is searching for. An example of this is Google’s knowledge

graph.2 The contextual information about the entities is mined from knowledge bases

such as Wikipedia, Freebase or proprietary ones constructed by the search engines. It

usually includes a basic description, some important information about the entity (e.g.

headquarters location for companies or details of birth for people) and a list of related

entities. An example of this can be seen in figure 1.1, which shows the result page

1http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
2http://www.google.com/insidesearch/features/search/knowledge.html

1

http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
http://www.google.com/insidesearch/features/search/knowledge.html

Chapter 1. Introduction 2

Figure 1.1: Part of Google’s search result page for the query “lionel messi”. The
information about the identified entity is shown in the right panel of the page.

of Google’s search engine when searching for the Argentinian football player “Lionel

Messi”.

The problem of providing users with the most relevant results to the query has been the

main problem studied in the context of search engines. However, the rapid growth of

the web has increased the need to support exploratory and serendipitous search [6, 46,

67]. Search engines have tried to overcome this challenge by providing query and web

page recommendations [13, 20, 61, 81]. The development of semantic web techniques,

including the creation of entity graphs which include information about entities and

relationships3 between them, has made it easier to explore entity recommendations [12,

133]. In that way it is likely to enhance user engagement, as users searching for a

particular entity may also be interested in finding information about other, related

entities. The right panel of the search results page in figure 1.1 shows the top-5 related

entities to “Lionel Messi”, suggested by Google’s search engine.

3In this thesis we use the terms “relationship” and “relation” interchangeably.

Chapter 1. Introduction 3

Figure 1.2: Part of Google’s search result page for the query “barack obama”. When
placing the mouse over the related entity “Michelle Obama”, an explanation of the

relation between her and “Barack Obama” is shown in a yellow box.

An important component that is usually missing when suggesting related entities is the

explanation of why these are related to the entity that the user searched for. For example,

when suggesting a related movie director for an actor, one would expect to see in which

movies the two co-operated, possibly with some more information about their relation.

In this work we focus on this problem which we name Entity Relationship Explanation.

The motivation is that even though some commercial search engines provide a description

of the relation for some entity pairs (see figure 1.2), this does not happen for every pair.

For example, none of the suggested related entities in figure 1.1 has an explanation of

the relation to football player Lionel Messi, whereas it would be expected to explain for

example that both Messi and Neymar are players of Barcelona F.C. In addition, to the

best of our knowledge, there is no published work being explicit on how search engines

generate descriptions of relations between entities.

Recently, there has been an emerging interest in relationship extraction [3, 9, 16, 36, 92],

sentence retrieval and question answering [1, 94, 98, 120, 129], and learning to rank

(LTR) [77]. This work tries to combine ideas from these areas to address the problem

of explaining relationships between entities. A related study has focused on finding

and ranking sentences that explain the relationship of an entity and a query [11], while

Chapter 1. Introduction 4

REX [37] has focused on generating a ranked list of knowledge base relationships for

an entity pair. Our work differs from the former study in that we want to explain the

relation of two different entities, and from the latter in that we try to select sentences

that describe a particular relation, assuming that this relation is given.

In this work, we approach Entity Relationship Explanation as a sentence ranking prob-

lem. Given a pair of entities and a pre-defined relation between them, we automatically

extract sentences from a document corpus and rank them with respect to how well they

describe the relation of the entities. Our main goal is to have a sentence that perfectly

explains the relation in the top position of the ranking. We employ a rich set of features

and use state-of-the-art supervised learning to rank algorithms in order to effectively

combine them. Our feature set includes both traditional information retrieval and natu-

ral language processing features which we augment with entity-dependent features that

can leverage information from the structure of a knowledge base. In addition, we use

features that try to capture the presence of the relation of interest in a sentence.

This work was done in collaboration with a major commercial search engine, Yahoo,

and focuses on explaining relationships between “people” entities in the context of web

search. We test our methods on a dataset of entities and relations used by the Yahoo

search engine in production. We give more details about this dataset in section 4.1.1.

1.1 Research Questions

The main research question of this thesis is whether we can effectively explain the relation

of interest of an entity pair in a knowledge base. In order to address this research

question we aim at answering the following sub-questions. First, we examine which is

the most effective method among state-of-the-art retrieval models and learning to rank

algorithms to explain a relation of interest between two entities (RQ1). To this end, we

perform a comparative study of these methods. We also experiment on how different

parameter settings affect retrieval performance (RQ2). Furthermore, we investigate

which features among the ones we devised for this task are the most important in a

machine learning scenario (RQ3). In addition, we examine how difficult this task is for

human annotators by measuring inter-annotator agreement (RQ4). Finally, we examine

how our method performs compared to a competing system on a separate entity pairs

dataset that contains popular entities (RQ5).

Chapter 1. Introduction 5

1.2 Contributions

The main contributions of this work are:

� a supervised method for ranking sentences with respect to how well they explain

the relation of an entity pair;

� insights into how the performance varies with different learning to rank algorithms

and feature sets;

� analysis of failure cases and suggestions for improvements;

� a manually annotated dataset which we plan to make publicly available to the

research community.

The remainder of this thesis is organized as follows. In Chapter 2 we discuss related work.

Our methods are described in Chapter 3. In Chapter 4 we describe the experimental

setup and in Chapter 5 we report and analyse our results. We conclude and discuss

future research directions in Chapter 6.

Chapter 2

Related work

In this section we provide an overview of work in research areas that are directly related

to the problem tackled in this thesis. More specifically, we describe work in semantic

search, sentence retrieval, question answering, relation extraction and learning to rank.

2.1 Semantic search

Semantic search aims at improving the search experience by understanding users’ intent

and the contextual meaning of queries and documents. Search engines utilize knowledge

bases which contain entities, relations, facts and more in order to enrich their results with

rich context and eventually improve the level of satisfaction from answering information

needs. In order to achieve this, semantic search faces several challenges, including entity

linking, entity retrieval and query understanding, which we describe below.

A crucial component of semantic search is entity linking (also called entity disambigua-

tion), which is the task of automatically linking raw text to entities. These entities

are usually taken from semi-structured knowledge bases such as Wikipedia [30, 40, 52,

54, 57, 69, 85, 87, 100, 106]. Among others, entity linking can facilitate the design of

entity-oriented user interfaces that can help the users access additional relevant infor-

mation, enable automatic knowledge base population and be used in order to improve

text classification and retrieval.

Entity linking can be split in three steps: the detection of mentions (phrases) that are

worth linking, the generation of candidate entities that a mention might link to and the

selection of the best candidate concepts to be linked according to the context. Some of

these steps can either be merged or performed in a different order. The first attempt

on entity linking first detects mentions using link probabilities that are constructed

6

Chapter 2. Related Work 7

based on how Wikipedia articles are linked inside Wikipedia and then disambiguates the

mentions to the appropriate entities [87]. The disambiguation is performed using features

of the mentions and the surrounding words. Another attempt on entity linking first

detects unambiguous entities that form the disambiguation context and then performs

the disambiguation by utilizing the similarity between each possible entity candidate and

the entities in the context, along with other features [91]. Similarity between entities is

computed using a semantic similarity measure for Wikipedia articles [126].

One challenge we face in this work is that the documents we extract the sentences from

are already linked to entities, but each entity is only linked once in the document, thus

not every sentence is linked to the entities it mentions. Since we are interested in the en-

tities each individual sentence mentions, we propose a heuristic entity linking algorithm

that links each sentence in a document to entities already linked in the document. This

approach is described in Section 3.1.1.

Another aspect of semantic search is entity retrieval, which regards information needs

that are more effectively answered by enhancing the document results with specific

entities [32, 125]. Entity retrieval can be done using unstructured text collections,

(semi)structured data sources or a mixture of these [97, 113, 122]. The application

of entity retrieval which is closest to our work is related entity finding or recommenda-

tion [17, 33]. Given a specific entity, entity recommendation aims at finding entities that

are somehow related to that entity. Entity recommendation has recently been applied by

commercial search engines to support exploratory and serendipitous search. A publicly

available study combines various data sources and uses a rich set of features to pro-

vide entity recommendations for web search for a major commercial search engine [12].

Another approach uses heterogeneous information networks and implicit feedback [132].

This problem has also been studied in the context of personalized recommendation [133].

A complementary problem to entity recommendation is the explanation of why two en-

tities are related, a problem which we address in this work.

Query understanding is fundamental for effectively answering user information needs.

This involves identifying users’ search intent which helps the search engines to provide

the users with direct answers to the queries. Several approaches have been proposed for

search intent prediction, Some of these approaches use text information from queries or

web pages [134], search logs [29] or combinations of the two [105]. Other approaches

focus on mining query templates or structured data in order to identify query intents

and attributes in them [2, 112]. An important part of query understanding is to identify

the entities that appear in the query [50, 84]. This was one of the tasks of the recent

Chapter 2. Related Work 8

ERD challenge which received considerable attention.1 Recently, involving entities have

been found beneficial for interpreting user intent [13, 58, 103, 107, 131].

In this work, we draw inspiration from the recent advances in semantic search and involve

ideas from this area by utilizing knowledge base entities, entity attributes and knowledge

base structure in order to facilitate relationship explanation between entities.

2.2 Sentence retrieval

Sentence retrieval regards finding relevant sentences that answer an information need

in a sentence corpus. It has been applied in various information retrieval applications

including novelty detection [5], summarization [44], question answering [98] and opinion

mining [68].

One of the first approaches for sentence retrieval introduced a vector space based model,

tf-isf, which is a variation of the classic tf-idf function used for document retrieval [5].

tf-isf accounts for inverse sentence frequency of terms in contrast to tf-idf which accounts

for inverse document frequency of terms. Despite its simplicity, tf-isf is considered very

competitive compared to document retrieval models tuned specifically for sentence re-

trieval, such as BM25 and language modeling [79]. Empirical valuations on passage

retrieval suggested that methods based on vector-space models perform well when re-

trieving small pieces of text [64, 65].

The tf-isf function is unaware of the surrounding sentences and the document from

which a sentence was extracted from. These signals can provide context regarding the

relevance of a sentence with respect to a topic. Several methods have been proposed that

try to incorporate local context in sentence retrieval. These methods include involving

mixture models that take into account not only the sentence but also the document and

the collection [95], incorporating very frequent words from the top retrieved documents

in the retrieval function [80], or adjusting tf-isf and the well-known language modeling

framework to account for sentence context [34, 39].

Another study approached question-based sentence retrieval using topic-sensitive Lex-

Rank [35] that accounts for the relevance of the sentence to the question and the simi-

larity between the candidate sentences [98]. Query expansion has also been studied for

the task of sentence retrieval in order to address the vocabulary mismatch between the

query and the sentences [26, 79]. This problem was also tackled using translation models

for monolingual data modified for sentence retrieval [94]. Translation models proved to

be successful for question answering and novelty detection. We build on this idea by

1http://web-ngram.research.microsoft.com/ERD2014/

http://web-ngram.research.microsoft.com/ERD2014/

Chapter 2. Related Work 9

utilizing methods for obtaining phrases similar to the relation in order to account for

vocabulary mismatch. These methods are described in Section 3.2.2.3.

Our method involves a sentence ranking module that aims to retrieve the sentences that

best describe the relation of interest between two entities. Instead of only relying on

sentence retrieval functions, our method combines various features that can help identify

relevant sentences using state-of-the-art learning to rank algorithms.

2.3 Question answering

Question answering (QA) is the task of providing direct and concise answers to questions

formed in natural language [56]. QA is a very popular task in natural language processing

and information retrieval. In fact, it is considered one of the oldest natural language

processing tasks [115] and it has gained considerable attention since the launch of the

TREC question answering track [123]. A famous automatic question answering system

developed at IBM named Watson won the Jeopardy quiz television show in February

2011 [41]. Here we give a brief overview of the main pipeline of QA systems. For a more

comprehensive overview of QA, please refer for example to [56, 78, 124].

There are two types of questions that QA systems answer : questions about facts (fac-

toid) and narrative questions (non-factoid). Most prior work in QA has focused on fac-

toid questions, although there has also been interest in non-factoid questions [4, 117, 120].

Our task is more related to factoid QA, as the explanation of a relation of an entity pair

can be considered as a fact. For this reason, we base our discussion on this type of QA.

Factoid QA in the IR setting usually consists of three main components : question

processing, passage retrieval and answer processing [62, 124]. Each of these components

is a separate machine learning task with different feature sets.

Question processing extracts the type of the question and the answer, which are usually

represented with named entity types [73]. It also filters terms from the question and

chooses keywords for document retrieval. Furthermore, it finds the question terms that

should be replaced in the answer and finds relations between entities in the questions

Passage retrieval starts with document retrieval using the keywords extracted from the

previous step as the query terms. Then, it segments the documents into passages and

finally ranks the passages by using the answer type extracted from the previous step.

The final component, answer processing, first extracts and then ranks candidate answers

using features extracted both from the text and from external data sources, such as

knowledge bases.

Chapter 2. Related Work 10

Note that QA can be regarded as a similar task to ours, assuming that the entity pair

and the relation of interest form the “question” and that the “answer” is the sentence

describing the relation of interest. Even though we do not follow the QA paradigm in

this work, some of the features we used are inspired from QA systems. In addition,

we employ learning to rank to combine the devised features, which has recently been

successfully applied for QA [1, 120].

2.4 Relation extraction

Relation extraction is the task of extracting semantic relations between entities from

text. This is useful for several applications including knowledge base enrichment [83]

and question answering [75],

One of the first approaches in relation extraction uses hand-written regular expression

patterns to detect hypernym relations [55]. This approach suffers from low-recall and

lack of generalization, as it is practically impossible to accurately derive human patterns

that work in every domain. Therefore, several studies have investigated the use of

supervised machine learning for this task. This involves labelling data in a corpus with

named entities and relations between them and combining various lexical, syntactic and

semantic features with machine learning classifiers [51, 119, 136]. Even though these

approaches can achieve high levels of accuracy given similar training and test sets, they

need expensive data annotation. Furthermore, they are usually biased towards the

domain of the text corpus.

Another type of relation extraction utilizes semi-supervised learning. A semi-supervised

approach used for relation extraction is bootstrap learning. Given a small number of

seed relation instances and patterns, bootstrap learning iteratively finds sentences which

contain the seed instances and uses the context of the sentences in order to create new

patterns [3, 16, 111]. Because of the small number of initial seeds and patterns, this

approach does not achieve high precision and suffers from semantic drift [92]. Another

semi-supervised approach used for relation extraction is distant supervision [92, 116].

This approach is different from bootstrapping techniques in that it uses a large knowledge

base (e.g. Freebase) to obtain a very large number of examples from which it extracts

a large number of features. These features are eventually combined using a supervised

classifier. This approach benefits from the fact that it uses very large databases instead

of labelled text and in that way manages to overcome overfitting and domain-dependence

problems from which supervised methods typically suffer [92].

Chapter 2. Related Work 11

Other methods approach relation extraction using unsupervised learning [9, 114]. These

methods use large amounts of parsed text, extract strings between entities and process

these strings in order to produce relation strings. One shortcoming of the unsupervised

approaches compared to distant supervision is that the relations they produce might

not be compatible with relations that already exist in knowledge bases. This makes the

automatic enhancement of knowledge bases non-trivial. A recent unsupervised approach

introduces lexical and syntactic constraints in order to produce more informative and

coherent relations [36]. Other approaches combine unstructured and structured data

sources for relation extraction [108].

In this work we propose a unified approach for relation identification in sentences and

sentence ranking that uses some features that are also used for relation extraction.

However, our method is less expensive because it does not use heavy-weight features that

require complicated linguistic analysis, such as shallow semantic parsing or dependency

parsing.

2.5 Learning to rank

Learning to rank (LTR) for information retrieval is a machine learning framework2 that

ranks instances by combining different features (or models) using training data. This

framework has been very popular in the research community recently [18, 19, 48, 77].

It has also been used by commercial search engines in order to account for the large

number of dimensions of web pages.3

There are three main approaches for LTR : pointwise, pairwise and listwise [77]. Below

we provide an overview of these approaches and an overview of the specific algorithms

used in our experiments.

2.5.1 Pointwise methods

Pointwise methods approach the problem of document ranking indirectly by trying to

approximate the true label of the documents. These methods utilize regression, clas-

sification, or ordinal regression techniques. The intuition behind pointwise methods is

that if the predicted labels are close to the actual labels, then the resulting ranking

of the documents will be close to the optimal. In regression techniques, the label of

each document is regarded as a real number and the goal is to find the ideal scoring

2Since learning to rank algorithms fall into the machine learning framework, in this thesis we use the
terms “machine learning” and “learning to rank” interchangeably when referring to such algorithms.

3http://blog.searchenginewatch.com/050622-082709

http://blog.searchenginewatch.com/050622-082709

Chapter 2. Related Work 12

function [27]. Classification techniques try to classify the documents according to their

labels [96]. Ordinal regression models try to find a scoring function, the output of which

can be used to discriminate between different relevance orders of the documents [28].

We focus on Random Forests (RF) [14] and MART [49], proven to be successful for

information retrieval tasks [22]. Both algorithms utilize Classification and Regression

Trees (CART) [15]. Random Forests (RF) [14] is a bagging algorithm that combines

an ensemble of decision trees. In bagging [15], a learning algorithm is applied multiple

times to a sub-sampled set of the training data and the averaged results are used for

doing the prediction. RF uses CART as the learning algorithm. At each iteration, it

samples a different subset of the training data with replacement and constructs a tree

with full depth. The decisions for the best split at each node of the tree are taken by only

using a subset of the features. In that way, overfitting is minimized as the individual

algorithms are learned using different subsets of the training data. The parameters of

RF are the number of trees and the number of features used for finding the best splits.

The algorithm is easily parallelizable as the trees created are independent of each other.

Gradient Boosted Regression Trees (GBRT) [49] has been reported as one of the best

performing algorithms for web search [19, 22, 93]. It is similar to RF in that it uses the

average of different learned decision trees. At each iteration, a tree with small depth is

added, focusing on the instances that have the higher current regression error. This is

in contrast to RF which uses full depth trees at each iteration. Formally, GBRT per-

forms stohastic gradient descent on the instance space {xi}ni=1, where xi is the feature

representation of document di and yi is the value of the corresponding label l of the doc-

ument. T (xi) denotes the current prediction of the algorithm for instance xi. The algo-

rithm assumes a continuous, convex and differentiable loss function L(T (x1), ..., T (xn))

that is minimized if T (xi) = yi for each i. Here we utilize the square loss function

L = 1
2

∑n
i=1(T (xi) − yi)2. The current prediction T (xi) is updated at each iteration

using:

T (xi)← T (xi)− α
L

T (xi)
,

where alpha is the learning rate and the negative gradient − L
T (xi)

is approximated using

the output of the current regression tree for xi. In our case, this gradient is the difference

between the observed and the estimated value of xi, as we use the square loss function.

The other parameters of the algorithm are the learning rate α, the number of iterations

and the depth of the tree.

Because of their nature, pointwise methods do not directly consider principles behind IR

metrics [77]. They ignore the fact that different documents are associated to different

Chapter 2. Related Work 13

queries, thus queries with a large number of documents are given more priority during the

learning procedure. This can be a problem if the number of documents for each query

in the dataset is not balanced. In addition, the loss functions used by the pointwise

methods do not directly account for documents ranking for each query. For this reason,

they might put too much effort in correctly predicting the labels of documents that

have to be positioned lower in the ranking. Therefore, more sophisticated approaches

have been proposed that try to address these problems have been proposed, namely the

pairwise and the pointwise approaches, which we describe in the next sections.

2.5.2 Pairwise methods

Pairwise methods treat the problem of document ranking as a pair ordering problem.

The idea is that if all document pairs are correctly ordered then it is straightforward

to combine them and create a perfect ranking of the documents. Pairwise methods are

closer than pointwise methods to how IR metrics such as MAP or NDCG measure the

quality of the ranking . Thus the problem of ranking is treated as a binary classification

problem. All possible document pairs are constructed and labelled for whether the

first or the second document should be ranked first according to their relevance to the

query (e.g. +1 if the first document in the pair should be ranked higher, -1 otherwise).

Therefore the learning goal is to minimize the number of mis-classified pairs. We test

two pairwise methods for this task, RankBoost [48] and RankNet [18].

RankBoost [48] is a modification of AdaBoost [47] which operates on document pairs

and tries to minimize the classification error. It is a boosting algorithm that maintains

a distribution over the document pairs. It starts with a distribution that gives equal

weights to all the pairs and iteratively trains “weak” rankers that are used to modify

the distribution so that incorrectly classified pairs are given higher weights than the

correctly classified ones. Thus it forces the weak ranker to focus on hard queries at future

iterations. The final ranking of the algorithm is constructed using a linear combination

of the “weak” rankers learned during this procedure.

RankNet [18] tackles the binary classification problem using a neural network. The

target probability for each document pair is 1 if it is correctly ordered and 0 if not.

During training, each document is associated with a score. The differences of the scores

of the two documents in the pair are used to construct the modeled probability. The cross

entropy between the target and the modeled probability is used as the error function, so

that if the modeled probability is farther from the target probability, the error is larger.

Gradient descent is employed to train the neural network. It has been reported that a

variation of RankNet was used by Microsoft Live Search for web search [77].

Chapter 2. Related Work 14

2.5.3 Listwise methods

Listwise methods move one step forward from pairwise methods in terms of modeling

the ranking problem as they try to minimize a loss function that directly takes into

account the ordering of all the documents in a query. Some of these methods, such as

AdaRank [128], try to optimize an approximation or bound of IR metrics, since some

metrics are position-based and thus non-continuous and non-differentiable [109]. Other

methods such as ListNet [21], utilize error functions that measure ranking differences

across lists. Here, we examine four listwise algorithms : AdaRank [128], Coordinate

Ascent [86], LambdaMART [127] and ListNet [21].

AdaRank [128] is a boosting algorithm based on AdaBoost. It follows the boosting idea

that we described previously for RankBoost but operates on query-documents lists, thus

the distribution is over the queries. It optimizes a listwise error function which is usually

an IR metric such as MAP or NDCG.

Coordinate Ascent (CoordAscent) [86] is also a listwise algorithm that directly opti-

mizes IR metrics. It is a linear feature-based method that uses the coordinate ascent

optimization technique. This procedure optimizes a single document feature repeatedly,

keeping the rest unchanged each time. In addition, it uses random restarts in order to

increase the likelihood of arriving to a global maximum.

LambdaMART [127] is a combination of GBRT [49] - also called MART (multiple addi-

tive regression trees) - and LambdaRank [104]. LambdaRank [104] uses an approxima-

tion to the gradient of the cost by modeling the gradient for each document in the dataset

with lambda functions, called λ-gradients. This is done because costs like NDCG are

non-continuous and therefore the gradient of the cost cannot be optimized directly. As-

suming that NDCG is being optimized, the λ-gradient for a document that belongs in a

document pair is computed using both the cross entropy loss and the gain in NDCG that

we will have if we swap the current order of the document pair (note that cross entropy

loss is also used by RankNet). Therefore, if a metric such as NDCG is optimized, not

all document pairs will have the same importance during training, as this will not only

depend on their labels but also on the document order for each query. LambaMART

builds on MART, the main difference of them being that LambdaMART computes the

derivatives as LambdaRank does. At each iteration, the tree being constructed models

the λ-gradients of the entire dataset, thus focusing on the overall performance of all

queries in the dataset. For more details on this algorithm, please refer to [127].

A listwise algorithm that does not directly optimize an IR metric is ListNet [21], which

uses a neural network as a model. This algorithm is similar to RankNet (described

before), the important difference between the two being that ListNet employs a listwise

Chapter 2. Related Work 15

instead of a pairwise loss function. The intuition behind this algorithm is that the

problem of ranking a set of documents can be mapped to the problem of finding the

correct permutation of the documents. During training, each document is given a score

and the algorithm employs the Luce model to define a probability distribution over the

possible distributions of the documents using the document scores [101]. A second,

target probability distribution is constructed using the true labels of the documents.

The training goal is to minimize the KL divergence between the first and the second

probability distributions. Gradient descent is used to train the neural network.

In this work, we combine methods and ideas inspired from the research areas described

in this chapter for the task of “Entity Relationship Explanation”. Section 3 provides a

detailed description of the proposed method.

Chapter 3

Method

We try to build automatic methods for explaining pre-defined relations of entity pairs

in the context of search engines, a problem which we named Entity Relationship Expla-

nation in Chapter 1. To this end, we utilize a dataset of a major commercial search

engine that contains entities and relations between them. We describe this dataset in

Section 4.1.1.

The problem we are trying to solve can be split in two parts. The first is to extract sen-

tences from a document corpus that refer to the entity pair and the second is to rank these

sentences based on how well they describe a pre-defined relation of the entity pair. More

formally, given two entities ea and eb and a relation r between them, the task is to extract

a set of candidate sentences S = {si} that refer to ea and eb and to provide the best rank-

ing for the sentences in S. Relation r has the general form : type(ea) terms(r) type(eb),

where type(e) is the type of the entity e (e.g. “Person”,“Actor”) and terms(r) are the

terms of the relation (e.g. “CoCastsWith”, “IsSpouseOf”). The main notation we use

is summarized in table 3.1.

Table 3.1: Main notation used in this work.

Notation Explanation

ea the first entity of the entity pair.

eb the second entity of the entity pair.

r the relation of interest between ea and eb.

S a set of candidate sentences possibly referring to ea and eb.

In this chapter we describe how we extract and enrich the candidate sentences and how

we tackle the sentence ranking problem.

16

Chapter 3. Method 17

3.1 Extracting sentences

We aim to find sentences that refer to the two entities ea and eb and to eventually rank

the sentences according to how well they describe the relation of interest r. In this

section we describe how we create the candidate set of sentences S and the way we

enrich the representation of the sentences with entities.

A natural source to extract sentences from is Wikipedia, a widely used semi-structured

knowledge base that provides good coverage for the majority of the entities. We hy-

pothesize that if both entities of an entity pair have a Wikipedia article, then it is likely

that a sentence related to their relation is included in one or more articles. In order to

achieve good coverage, we use three different text representations of entities: the title

of the Wikipedia article of the entity (e.g. “Barack Obama”), the labels that can be

used as anchor in Wikipedia to link to it (e.g. “president obama”) and the titles of the

redirect pages that point to this entity’s Wikipedia article (e.g. “Obama”). A sentence

is included in the candidate sentences set if it is found in the article of either ea or eb

and it contains the title, a label and/or a redirect of the other entity in the entity pair.

A sentence that contains the title, a label and/or a redirect of both entities in the entity

pair is also included in the candidate sentences set.

3.1.1 Sentences enrichment

As our ranking task is based on entities, it is natural to augment the sentences represen-

tation with entities in order to take advantage of information from external knowledge

bases when ranking. To this end, we first perform co-reference resolution at the docu-

ment level in order to replace the n-grams that refer to the entity with the title of the

entity and then perform entity linking on each sentence of the document [87, 91].

3.1.1.1 Co-reference resolution

Co-reference resolution is the task of determining whether two mentions are co-

referent [71, 72]. In our setting, we want to match the n-grams that refer to the

entity of interest in a document in order to be able to link these n-grams to the entity

in the knowledge base and also make the sentences self-contained. For example, if we

are interested in the entity “Brad Pitt”, the Wikipedia article of this entity contains

the sentence “He gave critically acclaimed performances in the crime thriller Seven...”.

We therefore need a way of identifying the referent of “He”, in this case “Brad Pitt”.

The same need appears for other cases as well, such as referring to “Toyota” as “the

company” or to “Gladiator” as “the film”.

Chapter 3. Method 18

We have experimented with the Stanford co-reference resolution system [71] and the

Apache OpenNLP tool1 and found that these systems were not able to consistently

achieve the desired behaviour for people entities in Wikipedia, which are the ones we

study in this work. Therefore, we devised a simple heuristic algorithm targeted specif-

ically to our problem. Since we are only interested in people entities, we count the

appearances of “he” and “she” in the article in order determine whether the entity is

male or female. We then replace the first appearance of “he” or “she” in the sentence

with the entity title. In order to avoid having multiple occurrences of n-grams referring

to the same entity in the sentence, we skipped the replacement when a label of the entity

is already contained in the sentence.

3.1.1.2 Entity linking

In order to augment each sentence with entities, we need to perform entity linking,

which is the task of linking free text to knowledge base entities [87, 91]. In a document

retrieval scenario using Wikipedia articles, this would not be needed, as the articles

already contain links to entities. However, the linking guidelines for Wikipedia articles

only allow one link to another article in the article’s text.2 For this reason, not every

sentence in an article contains links to the entities it mentions and thus it is not possible

to derive features dependent on entities. We describe the entity-dependent features we

devised for this task in the next section.

We employ a simple heuristic algorithm to perform entity linking in Wikipedia articles

at the sentence level. We restrict the candidate set of entities to the article itself and the

other articles that are already linked in the article. By doing this, no disambiguation is

performed and our linked entities are very unlikely to be wrong. The algorithm takes as

input the sentence annotated with the already linked entities and finds the n-grams that

are not already linked. Then, if the n-gram is used as an anchor of a link in Wikipedia

and it can be linked to a candidate entity, we link the n-gram to that entity.

Even though we do not evaluate these two components, we have observed that they

perform reasonably well in the end-to-end task. However, the co-reference resolution

component may produce grammar mistakes in some cases.

1https://opennlp.apache.org/
2http://en.Wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking

https://opennlp.apache.org/
http://en.Wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking

Chapter 3. Method 19

3.2 Ranking sentences

After extracting the candidate sentences S, we need to rank them by how well they

describe the relation of interest r of entities ea and eb. A naive approach for ranking

the sentences would be to use the title of each entity and the relation of interest as a

query and tackle the problem using state-of-the-art information retrieval models. Below

we briefly overview some of these models.

A classic vector space model is term frequency - inverse document frequency (tf-idf) [7],

which scores a document d with respect to a query q = {q1, . . . , qk} as follows:

score(d, q) =
∑
i

tf(qi, d) · idf(qi, C),

where tf(qi, d) is the number of times qi appears in document d, and

idf(qi, C) = log
|C|

|{d ∈ C : qi ∈ d}|
, (3.1)

where |C| is the size of the document collection and |{d ∈ C : qi ∈ d}| is the number of

documents in the collection that contain the term qi.

Language modeling for information retrieval estimates p(d|q), which is the conditional

probability that a document d generates the query q [102]. After applying Bayes’ rule,

we have:

p(d|q) =
p(d)p(q|d)

p(q)
,

where p(d) is the document’s prior probability, p(q|d) is the likelihood of the query given

the document and p(q) is the probability of the query. p(q) is ignored as it is independent

of the document and therefore not useful for ranking. By using a uniform document

prior we have:

p(d|q) = p(q|d) =
∏
i

p(qi|d)

When dirichlet smoothing is used [135], the probability of each term qi given the docu-

ment d is estimated as follows:

p(qi|d) =
tf(qi, d) + µ · p(qi|C)

|C|+ µ
,

Chapter 3. Method 20

where tf(qi, d) is the number of times qi appears in document d, p(qi|C) is the back-

ground collection language model, |C| is the size of collection C and µ is a smoothing

parameter.

BM25 [118] scores a document d with respect to a query q as follows:

score(d, q) =
∑
i

idf(qi, C) · tf(qi, d) · (k + 1)

tf(qi, d) + k · (1− b+ b · |d|
avgDocLength(C))

,

where tf(qi, d) is the number of times qi appears in document d, idf(qi, C) is the inverse

document frequency of qi in collection C (see equation 3.1), |d| is the length of document

d and avgDocLength(C) is the average document length in collection C. k and b are

free parameters.

In our setting we have a sentence retrieval scenario, where the collection C consists of

sentences and therefore the retrieval unit is a sentence s instead of a document d.

However, the candidate sentences have attributes that might be important for ranking

but cannot be captured by retrieval models, which are solely based on terms. The same

problem can be found in web search, where a web page importance can be measured by

features not dependent on terms or the query, such as links [99]. Therefore, a way of

combining different features is needed. This has been the subject of research in previous

years which has led to algorithms for learning to rank which proved to be very successful

for web search and other information retrieval applications [1, 19, 120]. We follow the

learning to rank framework and represent each sentence s with a rich set of features

F = {fi} that aim to capture different dimensions of the sentence and we use learning

to rank algorithms in order to combine them.

In this section we provide an overview of the learning to rank framework and describe

the features we devised for our task.

3.2.1 LTR framework

In Section 2.5 we provided an overview of LTR and described the different approaches

(pointwise, pairwise, listwise) and some important algorithms. Here we give an overview

of the LTR framework and how use it for our task.

In the LTR framework [77], the training data consists of a set of queries {qi} each of

them being associated with a set of documents {dj}. Each document is represented by a

set of features F and is judged with a label l. This label declares the degree of relevance

of document dj with respect to the query qi. A LTR algorithm learns a model that

combines the document features and is able to predict the label l of the documents in

Chapter 3. Method 21

the training data. The prediction accuracy is measured using a loss function. When a

new query comes in, the documents are ranked by the degree of relevance to the query

using the learned model.

While LTR is usually applied on documents, there is no restriction for applying it on

different kinds of instances. In fact, LTR has been successfully employed for question

answering [1, 120]. That task can be regarded similar to ours, as it can also contain a

sentence ranking component. The formulation of our problem makes LTR a natural so-

lution as we represent our sentences by feature vectors that capture different dimensions,

as described in the previous section. The only difference between our framework and

the classic LTR framework is that our retrieval unit is a sentence instead of a document.

3.2.2 Features

Table 3.2 contains an overview of the features F and below we describe each feature in

detail. In this section we group the features per type and provide a detailed description

of each feature.

3.2.2.1 Text features

This feature type regards the importance of the sentence s at the term level. A very

basic feature is the length of the sentence, Length(s), which is calculated at the term

level. A classic way of measuring term importance in a corpus is inverse document

frequency, idf , calculated as in Equation 3.1. We use Wikipedia as a background corpus

and calculate idf for every term t in s and include the average idf of the terms in s:

AverageIDF (s) =
1

|t|
∑
t∈s

idf(t, C) (3.2)

where |t| is the number of terms in s. We also include the sum of idf of the terms in s:

SumIDF (s) =
∑
t∈s

idf(t, C) (3.3)

Density-based selection was originally proposed in the field of question answering in

order to rank sentences [70] and was also used in comment-oriented blog summarization

for sentence selection [59]. In our setting, we treat stop words and numbers in s as

non-keywords, and the rest terms in s as keywords. We calculate the density of s as

Chapter 3. Method 22

T
a
b
l
e
3
.2
:

F
ea

tu
re

s
u

se
d

to
re

p
re

se
n
t

ea
ch

se
n
te

n
ce

,
g
ro

u
p

ed
b
y

fe
a
tu

re
ty

p
e.

T
ex

t
fe

at
u
re

s

A
v
er
a
g
eI
D
F

(s
)

A
ve

ra
g
e

ID
F

of
te

rm
s

o
f
s

in
W

ik
ip

ed
ia

,
se

e
E

q
u
at

io
n

3
.2

.
S
u
m
I
D
F

(s
)

S
u

m
of

ID
F

of
te

rm
s

of
s

in
W

ik
ip

ed
ia

,
se

e
E

q
u

at
io

n
3
.3

.
L
en
g
th

(s
)

N
u

m
b

er
of

te
rm

s
in
s.

D
en
si
ty

(s
)

L
ex

ic
al

d
en

si
ty

o
f
s,

se
e

E
q
u

at
io

n
3
.4

.
P
O
S

(s
)

P
ar

t
of

S
p

ee
ch

d
is

tr
ib

u
ti

on
of
s.

E
n
ti

ty
fe

at
u
re

s

N
u
m
E
n
ti
ti
es

(s
)

N
u
m

b
er

o
f

en
ti

ti
es

in
s.

C
on
ta
in
sL
in
k
(e
,s

)
W

h
et

h
er
s

co
n
ta

in
s

a
li
n
k

to
th

e
en

ti
ty
e,

ca
lc

u
la

te
d

fo
r

b
o
th
e a

a
n
d
e b

(b
in

a
ry

).
C
on
ta
in
B
ot
h
L
in
k
s(
e,
s)

W
h

et
h

er
s

co
n
ta

in
s

li
n
k
s

to
b

ot
h

b
ot

h
e a

an
d
e b

.
A
v
er
a
g
eI
n
L
in
k
s(
s)

A
v
er

ag
e

in
-l

in
k
s

co
u

n
ts

of
th

e
en

ti
ti

es
in
s.

S
u
m
I
n
L
in
k
s(
s)

S
u
m

of
in

-l
in

k
s

co
u
n
ts

o
f

th
e

en
ti

ti
es

in
s.

S
p
re
a
d
(e

a
,e

b
,s

)
D

is
ta

n
ce

b
et

w
ee

n
e a

an
d
e b

in
s.

B
et
w
ee
n
P
O
S

(e
a
,e

b
,s

)
P

ar
t

of
S
p

ee
ch

d
is

tr
ib

u
ti

on
b

et
w

ee
n
e a

an
d
e b

in
s.

L
ef
tP
O
S

(e
a
,e

b
,s

)
P

a
rt

of
S
p

ee
ch

d
is

tr
ib

u
ti

on
le

ft
o
f

th
e

en
ti

ty
(e

it
h

er
e a

o
r
e b

)
fo

u
n
d

fi
rs

t
in
s

(l
ef

t
w

in
d
ow

)
.

R
ig
h
tP
O
S

(e
a
,e

b
,s

)
P

ar
t

of
S
p

ee
ch

d
is

tr
ib

u
ti

on
ri

gh
t

of
th

e
en

ti
ty

(e
it

h
er
e a

o
r
e b

)
fo

u
n
d

fi
rs

t
in
s

(r
ig

h
t

w
in

d
ow

).
N
u
m
E
n
ti
ti
es
L
ef
t(
e a
,e

b
,s

)
N

u
m

b
er

of
en

ti
ti

es
in
s

in
th

e
le

ft
w

in
d

ow
of

th
e

en
ti

ty
fo

u
n
d

fi
rs

t
in
s

(e
it

h
er
e a

o
r
e b

).
N
u
m
E
n
ti
ti
es
R
ig
h
t(
e a
,e

b
,s

)
N

u
m

b
er

of
en

ti
ti

es
in
s

in
th

e
le

ft
w

in
d
ow

of
th

e
en

ti
ty

fo
u
n
d

fi
rs

t
in
s

(e
it

h
er
e a

or
e b

).
N
u
m
E
n
ti
ti
es
B
et
w
ee
n

(e
a
,e

b
,s

)
N

u
m

b
er

of
en

ti
ti

es
b

et
w

ee
n
e a

an
d
e b

in
s.

C
on
ta
in
sC
om

m
L
in
k
s(
e a
,e

b
,s

)
W

h
et

h
er
s

co
n
ta

in
s

on
e

of
th

e
to

p
-k

li
n

k
s

sh
ar

ed
b

et
w

ee
n

th
e

en
ti

ty
p

ai
r

(b
in

a
ry

).
N
u
m
C
om

m
L
in
k
s(
e a
,e

b
,s

)
N

u
m

b
er

of
to

p
-k

li
n
k
s

sh
a
re

d
b

et
w

ee
n

th
e

en
ti

ty
p
a
ir

in
s.

R
el

at
io

n
fe

at
u
re

s

M
a
tc
h
T
er
m

(r
,s

)
W

h
et

h
er
s

co
n
ta

in
s

an
y

te
rm

o
f
r

(b
in

ar
y
).

M
a
tc
h
S
y
n

(r
,s

)
W

h
et

h
er
s

co
n
ta

in
s

an
y

p
h

ra
se

in
w
or
d
n
et

(r
)

(b
in

a
ry

).
W
or
d
2v
ec
S
co
re

(r
,s

)
A

ve
ra

ge
sc

or
e

o
f

p
h

ra
se

s
in
w
or
d
2v
ec

(r
)

th
at

a
re

m
a
tc

h
ed

in
s.

M
a
x
W
or
d
2
v
ec
S
co
re

(r
,s

)
S

co
re

of
th

e
p
h
ra

se
w

it
h

th
e

m
ax

im
u

m
sc

or
e

in
w
or
d
2v
ec

(r
)

th
a
t

is
m

a
tc

h
ed

in
s.

M
a
tc
h
T
er
m
O
rS
y
n

(r
,s

)
W

h
et

h
er
s

co
n
ta

in
s

a
n
y

te
rm

of
r

or
an

y
p

h
ra

se
in
w
or
d
2
v
ec

(r
)

(b
in

ar
y
).

M
a
tc
h
T
er
m
O
rW

or
d
2
v
ec

(r
,s

)
W

h
et

h
er
s

co
n
ta

in
s

a
n
y

te
rm

of
r

or
a
n
y

p
h

ra
se

in
w
or
d
2
v
ec

(r
)

(b
in

a
ry

).
M
a
tc
h
T
er
m
O
rS
y
n
O
rW

or
d
2
v
ec

(r
,s

)
W

h
et

h
er
s

co
n
ta

in
s

an
y

te
rm

of
th

e
re

la
ti

on
r,

an
y

p
h
ra

se
in
w
or
d
n
et

(r
)

or
a
n
y

a
n
y

p
h

ra
se

in
w
or
d
2v
ec

(r
)

(b
in

ar
y
)

S
co
re
L
C

(e
a
,e

b
,r
,s

)
L

u
ce

n
e

sc
o
re

of
s

w
it

h
{e

a
,
e b

,
r,
w
or
d
n
et

(r
),
w
or
d
2
v
ec

(r
)}

a
s

th
e

q
u

er
y,

u
si

n
g
T
it
le

(e
),
R
ed
ir
ec
ts

(e
)

o
r
L
a
be
ls

(e
)

to
re

p
re

se
n
t

th
e

en
ti

ti
es
e a

a
n
d
e b

(3
fe

at
u

re
s)

.
S
co
re
B
M

25
(e

a
,e

b
,r
,s

)
B

M
25

sc
or

e
o
f
s.

T
h
e

q
u
er

y
is

co
n
st

ru
ct

ed
as

ab
ov

e.

S
o
u
rc

e
fe

at
u

re
s

(W
ik

ip
ed

ia
)

P
os
it
io
n

(s
,d

(s
))

P
os

it
io

n
of
s

in
d

o
cu

m
en

t
d
.

S
en
te
n
ce
S
ou
rc
e(
e,
d
(s

))
W

h
et

h
er

se
n
te

n
ce

’s
s

d
o
cu

m
en

t
d

is
th

e
en

ti
ty

’s
W

ik
ip

ed
ia

a
rt

ic
le

,
ca

lc
u

la
te

d
fo

r
b

ot
h
e a

a
n
d
e b

(b
in

a
ry

).
D
oc
C
ou
n
t(
e,
d
(s

))
N

u
m

b
er

of
o
cc

u
rr

en
ce

s
of
e

in
se

n
te

n
ce

’s
s

d
o
cu

m
en

t
d
,

ca
lc

u
la

te
d

fo
r

b
o
th
e a

a
n
d
e b

.

Chapter 3. Method 23

follows:

Density(s) =
1

K · (K + 1)

n∑
i=1

score(tj) · score(tj+1)

distance(tj , tj+1)2
, (3.4)

where K is the number of keyword terms t in s, score(t) is equal to IDF (t) and

distance(tj , tj+1) is the number of non-keyword terms between keyword terms tj and

tj+1.

Part-of-speech distribution is frequently used as a feature in relation extraction appli-

cations [92]. We calculate the POS distribution of the whole sentence POS(s) and use

the percentages of verbs, nouns, adjectives and others in s as features.

3.2.2.2 Entity features

Here we consider features that concern the entities of the sentence and are therefore

dependent on a knowledge base (in our case Wikipedia). First, we consider the number

of entities in the sentence, NumEntities(s).

The number of links that point to an entity in Wikipedia is an indication of popularity

or importance of the entity in the Wikipedia graph. We calculate this for every entity

in s and include AverageInLinks(s) and SumInLinks(s).

We include ContainsLink(e, s), which is an indicator of whether s contains a link to

either ea or eb. ContainBothLinks(e, s) indicates whether both ea and eb are con-

tained in s. We also calculate the distance of the entities of the pair in the sentence,

Spread(ea, eb, s), a feature also included in a closely related application [11].

Apart from the POS distribution of the sentence we discussed previously, we also consider

the POS between the entities ea and eb and POS on the left/right window of ea or eb

(depending on which appears first) [92]. We also include the number of entities between

(NumEntitiesBetween(ea, eb, s)), to the left (NumEntitiesLeft(ea, eb, s)) or to the

right (NumEntitiesRight(ea, eb, s)) of the entity pair. The max length of the window

is set to 4. Note that these features are calculated only when both entities are included

in the sentence.

Semantic similarity measures such as [126] assume that if two articles in Wikipedia have

many common articles (links) that point to them, then it is likely that the two are

strongly related. We hypothesize that if a sentence contains common links of ea and

eb, the sentence might contain some important information about their relation. An

example of this is the entity pair “Lionel Messi” - “Neymar”, for which “Barcelona FC”

Chapter 3. Method 24

is a common link. We score the common links between ea and eb and using the following

heuristic scoring function:

score(l, ea, eb) = similarity(l, ea) ∗ similarity(l, eb),

where l is the link examined and the similarity between two articles a1 and a2 in

Wikipedia is calculated using a version of Normalized Google Distance based on

Wikipedia links [126]:

similarity(a1, a2) =
log(max(|A1|, |A2|))− log(|A1 ∩A2|)
log(|W |)− log(min(|A1|, |A2|))

,

where A1 and A2 are the sets of articles in Wikipedia that link to A1 and A2 respectively

and W is the set of articles in Wikipedia. We then select the top k links (we set k = 30)

in order to calculate ContainsCommLinks(ea, eb, s), which indicates whether one of

the top-k entities is contained in the sentence and NumCommLinks(ea, eb, s), which

indicates the number of these common links.

3.2.2.3 Relation features

This feature type regards features that are aware of the relation of interest r between ea

and er. As described before, relation r has the general form : type(ea) terms(r) type(eb),

where type(e) is the type of the entity e (e.g. “SportsAthlete”) and terms(r) are the

terms of the relation (e.g. “PlaysSameSportTeamAs”).

MatchTerm(r, s) indicates if any of the relation terms is contained in the sentence,

excluding the entity types. However, matching only the terms in the relation has low

coverage. For example, phrases “husband” or “married to” are more likely to be con-

tained in a sentence describing the relation “Person isSpouseOf Person” than the rela-

tion term “spouse”. To this end, we employ Wordnet [38] in order to get phrases similar

to each relation. Similar ideas were investigated for sentence retrieval when constructing

monolingual translation tables [94] and for relation extraction [116]. When obtaining

phrases similar to relation r from Wordnet we use synonyms of the relation terms only,

without taking into account the entity types. For example, we only use synonyms of the

term “spouse” when we obtain synonyms of the relation “Person IsSpouseOf Person”.

We refer to the set of Wordnet synonym phrases of r as wordnet(r). MatchSyn(r, s)

indicates whether the sentence matches any of the synonyms in wordnet(r) and Match-

TermOrSyn(r, s) indicates whether MatchTerm(r, s) or MatchSyn(r, s) is true.

We explore another way of obtaining phrases similar to the relation r by employing

an unsupervised algorithm that can be used for measuring semantic similarity among

Chapter 3. Method 25

words or phrases [88, 90]. This algorithm has attracted a lot of attention recently in

the research community [10, 63, 89]. The algorithm takes a text corpus as input and

learns vector representations of words consisting of real numbers using the continuous

bag of words or the skip-ngram architectures [88]. It has been shown that these vectors

can be used for measuring semantic similarity between words by employing the cosine

distance of two vectors and thus they can be used for analogical reasoning tasks. Another

important characteristic of this algorithm is that multiple vectors can be added element-

wise and the resulting vector can represent the “combined meaning” of the individual

vectors. An example demonstrating this characteristic taken from [90] is that the closest

vector of the combination of the vectors of “Vietnam” and “capital” is “Hanoi”, as one

would expect. A simple algorithm that accounts for word co-occurrence can be used in

order to obtain vector representations for phrases [90]. For the rest of this thesis, we

refer to the phrase vectors learned with this algorithm as word2vec vectors.

In order to compute the most similar phrases to the relation r using the word2vec vectors,

we select terms both from the relation terms and the entity types of the two entities

in the relation, excluding the entity type “person” which proved to be very broad and

not informative. We then compute the distance between the vectors of all the candidate

phrases in the data and the vector resulting from the element-wise sum of the vectors

of the relation terms.

More formally, given the set Vr which consists of the vector representations of all the

relation terms and the set V which consists of the vector representations of all the

candidate phrases in the data, we calculate the distance between a candidate phrase

represented by a vector vi ∈ V and all the vectors in Vr as follows:

distance(vi, V) = cosine sim(vi,
∑

vj∈Vr

vj), (3.5)

where
∑

vj∈Vr
vj is the element-wise sum of all the vectors in Vr and the distance between

two vectors v1 and v2 is measured using cosine similarity, which is calculated as:

cosine sim(v1,v2) =
v1 · v2

|v1| · |v2|
,

where the numerator is the dot product of v1 and v2 and the denominator is the product

of the euclidean lengths of v1 and v2. The candidate phrases in V are then ranked using

Equation 3.5 and the top m phrases are selected. We refer to the ranked set of phrases

that are selected using this procedure as word2vec(r), where |word2vec(r)| = m.

Below we illustrate what phrases this procedure suggests with an example. For relation

“MovieDirector Directs MovieActor”, we compute the distance between the vectors of

Chapter 3. Method 26

the candidate phrases and the vector resulting from the element-wise sum of the vectors

of the relation terms “movie”, “director”, “directs” and “actor”. The top 10 phrases

suggested for this relation were “film”, “cast”, “actors”, “starring”, “films”, “movies”,

“starred”, “feature film”, “costars” and “lead role”.

We include several features which are computed using the most similar phrases to r

according to word2vec. Word2vecScore(r, s) is the average score (cosine similarity) of

phrases in word2vec(r) that are matched in s, MaxWord2vecScore(r, s) is the score of

the phrase with the maximum score (cosine similarity) in word2vec(r) that is matched

in s. MatchTermOrWord2vec(r, s) indicates whether s contains any term of r or

any phrase in word2vec(r). MatchTermOrSynOrWord2vec(r, s) indicates whether

s contains any term of the relation r, any phrase in wordnet(r) or any any phrase in

word2vec(r).

In addition, we employ state-of-the-art information retrieval ranking functions and in-

clude the sentences scores for query q, which is constructed using the entities ea and

eb, the relation r, wordnet(r) and word2vec(r). We add one feature for each way of

representing the entities ea and eb : the title of the entity articles Title(e), the titles of

the redirect pages of the entity article, Redirects(e), and the n-grams used as anchors

in Wikipedia to link to the article of the entity, Labels(e). This produces 3 features per

ranking function. As for the ranking functions, we score the sentences using the Lucene

scoring function3 and Okapi BM25 [110].

3.2.2.4 Source features

By source features we refer to features that are dependent on the source document of the

sentences. We consider the position of the sentence in the document, Position(s, d(s))

and SentenceSource(e, d(s)), which indicates whether sentence s originates from entity

ea or entity eb. We also consider the number of occurrences of ea and eb in sentence’s s

document d, DocCount(e, d(s)), a feature inspired by document smoothing for sentence

retrieval [94]. The intuition here is that if an entity is found multiple times in a document,

then the sentence found in that document might be more important for that entity.

3https://lucene.apache.org/core/4_3_1/core/org/apache/lucene/search/similarities/

TFIDFSimilarity.html

https://lucene.apache.org/core/4_3_1/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://lucene.apache.org/core/4_3_1/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

Chapter 4

Experimental setup

In this chapter we provide details on dataset construction, the annotation procedure

and the evaluation metrics that we used in order to design our experiments. We also

provide experimental details for the learning to rank algorithms we experimented with.

4.1 Dataset

4.1.1 Entity pairs

We focus on “people” entities and relations between them, which we obtain by utilizing

an automatically constructed dataset which contains entity pairs and their relations.

This dataset is used in production by the Yahoo web search engine [12] and it was con-

structed by combining information about entities and their relations from various data

sources, including Freebase, Wikipedia and IMDB. Note that our methods are indepen-

dent of the restriction on “people” entities, except from the co-reference resolution step

described in Section 3.1.1.

Because of the vast size of that dataset, we pick 90 entity pairs from this dataset to

construct our experimental dataset. 21 pairs were manually picked as use cases (e.g.

“Brad Pitt - Angelina Jolie (Person IsPartnerOf Person)”), while 39 pairs were randomly

sampled. For the remaining pairs, we tried not to overemphasize on entities that are

either very popular or rare among the search engine users. In order to measure this,

we needed a popularity distribution over the entities. To construct this distribution we

utilized nine months of query logs of the U.S. Yahoo web search engine and counted

the number of times a user clicks the link of the Wikipedia article of an entity in the

results page. We then filtered the entity pairs set so that both entities of each pair

27

Chapter 4. Experimental Setup 28

appear between the mean and one standard deviation above or below the mean of the

popularity distribution. We then sampled 30 pairs from the resulting set.

We extracted our sentences dataset using the approach described in Section 3.1. This

procedure extracts 724 sentences in total for the 90 pairs in our dataset. The average

number of sentences per pair is 8.04. The maximum number of sentences for a pair is

40 and the minimum is 2.

In order to compute vector representations of phrases and the distance between them,

we use a publicly available software package.1 The model is trained on text extracted

from a full Wikipedia dump consisting of approximately 3 billion words using negative

sampling and the continuous bag of words architecture [88, 90]. The size of the phrase

vectors is set to 500. The trained phrase vectors achieved 75% accuracy on the analogical

reasoning task for phrases described in [90]. We use the phrase vector representations

of the learned model to construct the phrase set word2vec(r) for each relation r, as

explained in Section 3.2.2.3. The size of word2vec(r) is set to m = 30.

4.1.2 Sentences preprocessing

We preprocessed Wikipedia with wikipedia-miner2 in order to extract the sentences and

their corresponding features. We performed co-reference resolution and entity linking on

the sentences using the heuristics described in Section 3.1.1. The sentences were POS-

tagged with the Stanford part-of-speech tagger [121]. We filter out stop words using the

Lucene list of English stop words.3

4.1.3 Wikipedia

We use an English Wikipedia dump dated March 2, 2014. This dump contains 4,342,357

articles. We used Wikipedia both as a corpus to extract sentences from and as a knowl-

edge base. We indexed Wikipedia both at the sentence level (for extracting sentences)

and at the article level (for obtaining term statistics).

4.2 Annotations

Two human annotators were involved in providing relevance judgements for the sentences

in our dataset. For every entity pair they annotated, the annotators were presented with

1https://code.google.com/p/word2vec/
2http://Wikipedia-miner.cms.waikato.ac.nz
3http://lucene.apache.org

https://code.google.com/p/word2vec/
http://Wikipedia-miner.cms.waikato.ac.nz
http://lucene.apache.org

Chapter 4. Experimental Setup 29

the Wikipedia articles of the two entities and the relation of interest that we wanted to

explain using the extracted candidate sentences. The sentences were judged based on

how well they describe the relation of interest on a five level graded relevance (perfect,

excellent, good, fair, bad). A perfect or an excellent sentence should describe the relation

of interest at a satisfactory level, but a perfect sentence is relatively better for presenting

it to the user. A good or a fair sentence indicates a sentence which is about another

aspect of their relation, not necessarily related to the relation of interest.

The first annotator provided relevance judgments for the entire dataset. In order to

answer research question (RQ4), which examines how difficult this task is for the hu-

man annotators, we decided to have a subset of the dataset annotated by the second

human annotator, who annotated one third of the dataset. The kappa coefficient of

inter-annotator agreement is k = 0.314, which is considered as a fair agreement. When

weighted kappa [45] is used, the agreement measure is k = 0.503, which shows moderate

agreement. We noticed that the first annotator was stricter and that one of the main

disagreements between the two annotators was whether a sentence was perfect or excel-

lent for describing the relation. We conclude that the task is not easy for the human

annotators.

The overall relevance distribution of the sentences in the dataset is : 13.12% perfect,

7.6% excellent, 26% good, 28.31% fair and 24.31% bad. Out of 90 entity pairs, 81 of

them have at least one sentence annotated as excellent and 66 of them have at least one

sentence annotated as perfect.

4.3 Evaluation metrics

We evaluate the performance of our methods in order to answer research question (RQ1)

in two different scenarios. In the first scenario, we want to show a single sentence to the

user which would be able to describe the relation of interest of an entity pair. Therefore,

we prioritize having the most relevant sentence at the top of the ranking. For this case

we report on NDCG@1 [60], ERR@1 [23] and reciprocal rank for perfect or excellent

(perfectRR, excellentRR). We also report on excellent@1 which indicates whether we

have an excellent or a perfect sentence at the top of the ranking. In addition, we report

on perfect@1 which indicates whether we have a perfect sentence at the top of the

ranking. Note that not all entity pairs have an excellent or a perfect sentence.

We also consider another scenario, where the user is not only interested in the best sen-

tence that describes the relation of interest between two entities but also in having more

information about the entity pair. This information might include more details about

Chapter 4. Experimental Setup 30

the relation of interest or different relations. Here we report on NDCG@10 [60] and

ERR@10 [23]. Note that an ideal ranking can eventually be used as input of a summa-

rization system, designed for aggregating the ranked sentences in a succinct paragraph.

We perform 5-fold cross validation and test for statistical significance using a paired,

two-tailed t-test. We depict a significant increase in performance when against a single

baseline for p < 0.01 with N (H for a decrease) and for p < 0.05 with M (O for a decrease).

4.4 LTR algorithms

Research Question (RQ1) considers the effect of retrieval models and learning to rank

methods on retrieval performance. Here we report the learning to rank algorithms and

the default parameters of these algorithms used for answering (RQ1).

As discussed in Section 2.5, LTR approaches can be categorized to pointwise, pair-

wise and listwise [77]. We consider at least two algorithms from each category for this

task: RF and GBRT (pointwise), RankBoost and RankNet (pairwise) and AdaRank,

CoordAscent, LambdaMART and ListNet (listwise). For our experiments, we use the

RankLib4 implementation of the above algorithms with the default parameters without

tuning or feature normalization, unless otherwise specified.

For RF, we set the number of iterations to 300 and the features sampling rate to 0.3.

We set the number of trees for GBRT and LambdaMART to 1000, the number of leaves

for each tree to 10, the learning rate to 0.1 and we use all threshold candidates for tree

splitting. For RankBoost, we train for 300 rounds and use 10 threshold candidates. The

neural network of RankNet consists of 1 hidden layer and 10 nodes per layer, the number

of epochs is set to 100 and the learning rate to 0.00005. For AdaRank the number of

training rounds is set to 500, the tolerance between two consecutive learning rounds is

set to 0.002. A feature can be consecutively selected without change in performance for

a maximum of 5 times. We set the number of random restarts for CoordAscent to 5, the

number of iterations to search in each dimension to 25 and the performance tolerance

between two solutions to 0.001. We don’t use regularization for CoordAscent.

We choose RF as our main learning algorithm, as it outperformed the rest of the algo-

rithms we examine in most of our preliminary experiments. Moreover, it is insensitive to

parameter settings, resistant to overfitting and parallelizable. We refer to this as the full

machine learning algorithm. Note that the results vary slightly for different runs of RF

and CoordAscent. For this reason, unless otherwise specified, we report on the average

of 5 runs for these two algorithms. We provide a comparison of all the algorithms in

4http://sourceforge.net/p/lemur/wiki/RankLib/

http://sourceforge.net/p/lemur/wiki/RankLib/

Chapter 4. Experimental Setup 31

Section 5.4, where we also analyse the effect of variance in results for different runs for

RF, GBRT, CoordAscent and LambdaMART.

Chapter 5

Results and discussion

In this section we describe and analyse the results of the experiments we conducted in

order to answer our research questions introduced in Section 1.1. We present results

for the baselines and the full model, provide a feature analysis, analyse failure cases

and benchmark different machine learning models for this task. Finally, we provide a

comparison of our method to a competing system.

5.1 Baselines

A straightforward way to rank the candidate sentences would be to use state-of-the-art

information retrieval models and model our problem at the term level. We employ the

Lucene ranking function (LC)1, which is a heuristic function based on the vector space

model, language modeling with dirichlet smoothing (LM) [135] and BM25 [118]. We use

the default values for BM25 (k = 1.2, b = 0.75) and LM (µ = 2000).

The query q can be constructed using representations of the two entities ea and eb and

of the relation r. Each entity in the entity pair can be represented in the query by the

title of the entity article, Title(e), the titles of the redirect pages of the entity article,

Redirects(e) or the n-grams used as anchors in Wikipedia to link to the article of the

entity, Labels(e). The relation r can be represented by the terms in the relation, by the

synonyms in wordnet(r) or by the phrases in word2vec(r).

We explore several ways of constructing the query q, all of them including a represen-

tation of the entities ea and er and differing in the way of representing the relation

r. Baseline B1 does not include any representation of r in the query. B2 includes

1https://lucene.apache.org/core/4_3_1/core/org/apache/lucene/search/similarities/

TFIDFSimilarity.html

32

https://lucene.apache.org/core/4_3_1/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://lucene.apache.org/core/4_3_1/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

Chapter 5. Results and Discussion 33

Table 5.1: Results for the best performing combination of each baseline. Boldface
marks best performance in the respective metric.

Method NDCG@1 NDCG@10 Perfect@1 Excellent@1 ERR@1 ERR@10 PerfectRR ExcellentRR

B1 0.4970 0.7535 0.2889 0.4444 0.3965 0.5654 0.4345 0.6007

B2 0.5051 0.7544 0.2778 0.4444 0.3938 0.5647 0.4290 0.6007

B3 0.5232 0.7623 0.2778 0.4667 0.4028 0.5692 0.4259 0.6089

B4 0.5659 0.7810 0.3222 0.5110 0.4389 0.5975 0.4618 0.6523

B5 0.5587 0.7842 0.3111 0.5000 0.4306 0.5943 0.4565 0.6430

the relation terms of r, while B3 includes the relation terms of r and the synonyms in

wordnet(r). B4 includes the terms of r and the phrases in word2vec(r), and B5 includes

both the the synonyms in wordnet(r) and the phrases in word2vec(r). We combine each

of the possible representations of the entities, Title(e), Redirects(e) and Labels(e) with

the different ranking functions, thus having 9 possible scores for each way of constructing

the query.

Table 5.1 shows the best performing combination of the above for B1, B2, B3, B4 and

B5. We omitted the rest combinations from this table because the results were not

informative. The best results for each baseline were obtained using the labels of the

entities in the query. This is reasonable, as the labels encode the most likely phrases

for referring to the entities, thus having better coverage compared to the titles and the

redirects. Interestingly, the best combination of all the baselines used the Lucene ranking

function, which outperformed BM25 and LM. However, the difference was significant

only compared to LM. Note that as our retrieval unit is a sentence, the Lucene ranking

function becomes similar to the tf-isf function. As discussed in Section 2.2, tf-isf is

considered as a competitive model for sentence retrieval.

As we can observe from table 5.1, B4 and B5 are the best performing baselines. This

suggests that adding the phrases in word2vec(r) to the query is beneficial. Also, adding

the Wordnet synonyms of the relation to the query can help in some cases. Although a t-

test does not account for multiple comparisons and thus reporting significant differences

using it might not give safe conclusions when comparing to multiple baselines, we report

some complementary significance results. B4 significantly outperforms B1, B2 and B3

(p < 0.05) whereas B5 significantly outperforms B1 and B2 for all metrics (p < 0.05).

However, there is no significant difference between B4 and B5 for any metric.

In order to achieve stronger baselines, we employ machine learning and use the scores of

different combinations of the baselines as features. However, this model was not able to

outperform any of the best performing combination of each baseline, probably because

the features were correlated.

Chapter 5. Results and Discussion 34

Table 5.2: Results for the best performing baselines and the full machine learning
model. Boldface marks best performance in the respective metric. Significance is tested

against Full-ML.

Method NDCG@1 NDCG@10 Perfect@1 Excellent@1 ERR@1 ERR@10 PerfectRR ExcellentRR

Full-ML 0.7448 0.8719 0.5222 0.6667 0.5931 0.7024 0.6039 0.759

B4 0.5659H 0.7810H 0.3222H 0.5110H 0.4389H 0.5975H 0.4618H 0.6523H

B5 0.5587H 0.7842H 0.3111H 0.5000H 0.4306H 0.5943H 0.4565H 0.6430H

5.2 Full machine learning model

In this section we provide the results obtained using machine learning (RF) by utilizing

all the features described in Section 3.2.2.

5.2.1 Comparison to the baselines

This experiment regards research question (RQ1), which investigates the most effective

method for explaining relations between entities. We use B4 and B5 as baselines as they

achieved the best scores both for NDCG@1 and NDCG@10 in the previous experiment.

We use RF as our learning algorithm, but also provide a benchmark of different machine

learning algorithms in Section 5.4.

Table 5.2 shows the results of this experiment. It can easily be derived that the full ma-

chine learning model is the best performing method, as both B4 and B5 have significantly

worse performance than the full model by a large margin.

Figure 5.1 shows the difference on NDCG@1 per entity pair between B5 and Full-ML. We

do not include the corresponding plot for differences between B4 and Full-ML because

we observed almost identical trends. It is clear from this plot that Full-ML is a more

suited method for this task in most of the cases. Full-ML performance is worse than

B5 for only 11% of the pairs. We further looked into the cases where Full-ML hurts

performance and found that most of them were due to mistakes in entity linking or pre-

processing, which reduced the features reliability. Other failure cases are due to the fact

that the model put too much emphasis on specific features, such as features indicating

the existence of relation terms in the sentence. However, these failure cases suggest that

this is not desirable in all the cases. A more comprehensive analysis of failure cases is

given in Section 5.2.2.

Reporting on metrics based on perfect or excellent labelled sentences for pairs that do not

have at least one candidate sentence labelled as perfect or excellent is not fair. Metrics

that explicitly account for perfect or excellent sentences can never have a score of 1 on

Chapter 5. Results and Discussion 35

Figure 5.1: NDCG@1 difference per entity pair between B5 and Full-ML. A positive
difference marks improvement for RF over B5.

1.0

0.5

0.0

0.5

1.0

ND
CG

@
1

di
ffe

re
nc

e
pe

r q
ue

ry

Table 5.3: Results for the full machine learning model, where we filtered out entity
pairs that do not have any sentence annotated as perfect (HasPerfect) or any sentence

annotated as excellent (HasExcellent).

Dataset NDCG@1 NDCG@10 Perfect@1 Excellent@1 ERR@1 ERR@10 PerfectRR ExcellentRR

HasPerfect 0.7682 0.8772 0.6923 0.7692 0.7087 0.8129 0.8054 0.8577

HasExcellent 0.7617 0.8768 - 0.7500 0.6516 0.7596 - 0.8525

the full dataset. For that reason, we exclude entity pairs that do not have any sentence

annotated as perfect or excellent from the averaged results of the same experiment for

the full machine learning model and show the results in table 5.3. We observe that for

entity pairs that have at least one sentence annotated as perfect, we get one sentence

annotated as perfect or excellent for 75% of the cases at the top of the ranking. Also, a

sentence annotated as perfect is ranked at the top of the ranking for almost 70% of the

cases. Note that, as we described in Section 4.2, even though a sentence annotated as

excellent is not as good as a sentence annotated as perfect, it can explain the relationship

of an entity pair at a satisfactory level. In addition, the mean reciprocal rank scores for

both perfect and excellent are promising.

5.2.2 Insights & error analysis

In this section we gather results insights and give examples of failure cases of the full

machine learning model. Table 5.4 contains some examples of entity pairs for which the

model failed to return the best possible sentence on the top of the ranking.

Chapter 5. Results and Discussion 36

Table 5.4: Examples of failure cases. Each group in the table contains an entity
pair, the relation of interest and two sentences. The first sentence is the best candidate
sentence for the entity pair and the second is the sentence ranked highest by our model.

(#1) Dina Lohan - Michael Lohan (Person IsSpouseOf Person)

Michael Lohan (born April 25, 1960) is the ex-husband of Dina Lohan, and the father
of actresses Lindsay Lohan and Ali Lohan.

Dina Lohan also is mother of Michael Lohan Junior and Dakota Lohan.

(#2) Heather Langenkamp - Robert Englund (MovieActor CoCastsWith MovieActor)

John Saxon and Robert Englund also returned with Langenkamp in “Dream Warriors”
and “New Nightmare”.

The film introduced the iconic villain Freddy Krueger, played by Robert Englund.

(#3) Letizia Ramolino - Napoleon (Person IsParentOf Person)

Nobile Maria Letizia Buonaparte née Ramolino (Marie-Lætitia Ramolino, Madame Mère
de l’Empereur) (24 August 1750 – 2 February 1836) was the mother of Napoleon I of
France.

Letizia Ramolino bore 13 children, eight of whom survived infancy, and most of whom
were created monarchs by Napoleon.

(#4) Karl von Habsburg - Otto von Habsburg (Person IsChildOf Person)

Born in Starnberg, Bavaria, Germany, Karl von Habsburg is the son of Otto von Hab-
sburg and Princess Regina of Saxe-Meiningen, and the grandson of the last Austrian
emperor, Charles I.

In 1 January 2007, his father, Otto von Habsburg, relinquished his position as the head
of the House of Habsburg, a status which then devolved on Karl.

(#5) Ossie Davis - Ruby Dee (Person IsSpouseOf Person)

Ruby Dee (born October 27, 1922) is an American actress, poet, playwright, screenwriter,
journalist, activist, and widow of actor Ossie Davis.

Three years later Ruby Dee married actor Ossie Davis.

A general observation regardless of the ranking errors is that many sentences contain

information that might be regarded unnecessary for explaining the relation of interest

between the two entities. For example, the best candidate sentence of the pair “Letizia

Ramolino” - “Napoleon” (#3) could be reduced to “Nobile Maria Letizia Buonaparte

née Ramolino was the mother of Napoleon I of France.”, without loss in relation ex-

planation quality. This challenge might be addressed by adding a sentence compression

preprocessing step [25, 66], possibly modified for our task. This might also make the

features more stable across sentences. In order to further analyse this phenomenon, we

asked one annotator to judge each sentence based on whether it would retain its relation

explanation quality or even be benefited if one or more parts of the sentence were hypo-

thetically removed. The annotator annotated the full sentence dataset and judged 62%

of the sentences as valid candidates for compression. We then asked a second annotator

Chapter 5. Results and Discussion 37

to do the same for one third of the sentences in the dataset. Their judgements were

almost identical, confirming that this phenomenon needs further investigation. However,

deciding whether modifying the sentences for this task in the context of search engines

is needed is not trivial. For example, consider the best candidate sentence of the pair

“Dina Lohan” - “Michael Lohan” (#1). One might argue that if we reduce that sentence

to “Michael Lohan (born April 25, 1960) is the ex-husband of Dina Lohan.”, even though

there would be no loss in relation explanation quality, there would be loss in context.

The decision of whether to perform sentence compression or not might also depend on

the device of the search engine user, as a more succinct version is more reasonable to be

preferred for a mobile device. A user study could shed light on this problem and suggest

solutions on how to address it. We leave this for future work.

It is interesting that the best sentence of the pair “Dina Lohan” - “Michael Lohan” (#1)

was not ranked at the top position by our model, as it contains both the entities and the

term “husband”. This term is one of the top ranked phrases in word2vec(Person Is-

SpouseOf Person). One possible cause of this might be that the entity linking module

linked the sentence with the highest model score to “Michael Lohan” instead of “Michael

Lohan Junior” (his son), as the latter entity was not included in the Wikipedia version

we used. Another possible reason might be that the model had a preference on shorter

sentences or sentences in which the two entities were positioned close to each other.

Consider the best candidate sentence of the pair “Heather Langenkamp” - “Robert En-

glund” (#2), who both appeared in the films “Dream Warriors” and “New Nightmare”.

Although this sentence refers to both the entities, it might be the case that it is not

ranked first by our model because it does not include any terms directly related to the

relation of interest, in contrast to the top ranked sentence, which contains the terms

“film” and “played”. The last two terms were included in word2vec(MovieActor Co-

CastsWith MovieActor). A related example is the pair “Karl von Habsburg” - “Otto

von Habsburg” (#4). The top ranked sentence of this pair contains the term “father”

which is similar to the relation “IsChildOf”, but that particular sentence only discusses a

minor aspect of the relation of the two entities. These two examples show that matching

the relation terms or terms similar to them may cause problems in some cases.

Another example is the model’s top ranked sentence for the pair “Letizia Ramolino” -

“Napoleon” (#3). Even though that sentence describes the relation indirectly, it could

be presented together with the best candidate sentence to the user as it gives more

information about the entity pair. A summarization system specifically designed for

this task may eventually combine the top ranked sentences of our model in order to

produce a succinct paragraph explaining the relation.

Chapter 5. Results and Discussion 38

Finally, consider the pair “Ossie Davis” - “Ruby Dee” (#5). The sentence ranked highest

by the model explains the relation at a satisfactory level, however the best candidate

sentence is self contained and gives a more accurate explanation, as it mentions that

“Ruby Dee” is the widow of “Ossie Davis”. Our model was not able to capture this

difference as none of the terms of or similar to the relation contained the term “widow”.

This suggests further investigation of how relations should be represented. Another

interesting observation about this pair is that the sentence ranked highest by our model

has a temporal nature which in this case makes the sentence not self-contained. In fact,

the previous sentence of this sentence’s document refers to the divorce of Ruby Dee with

Frankie Dee Brown. Exploring solutions that identify these cases is worth investigating

in the future.

We note that some of these errors might be produced because some features work well in

general but dominate the decisions made by the model. This results in errors for cases

where the intuitions behind these features do not hold. We further analyse the effect of

each feature on retrieval performance in Section 5.3.

5.2.3 Parameter settings

Here we examine the effect of parameter settings on our main machine learning algorithm

in order to answer research question (RQ2). RF has two main parameters to tune, the

number of iterations (one tree is constructed at each iteration) and the features sampling

rate. Features sampling rate is the percentage of features used by the algorithm to find

the best split at each node in the tree. If not varied, the number of iterations is set to

300 and the feature sampling rate is set to 0.3.

Figure 5.2 shows how the performance varies for different number of iterations. The plot

shows that after 300 iterations the performance becomes stable for both NDCG@1 and

NDCG@10, suggesting that we can stop the training procedure at that point without

decrease in performance.

The effect of varying the features sampling rate is shown in figure 5.3. It can be observed

that we can safely set this parameter between 0.1 and 0.3, as there are no significant

differences between 0.3 and 0.1 or 0.2. These two experiments confirm that RF is

relatively insensitive to parameter settings.

We also examine how different ways of normalizing the features affect the performance

of our method. Table 5.5 shows how the performance varies if : (i) no normalization is

used (No-norm), (ii) each feature is normalized by the sum of its values (Sum), (iii) each

Chapter 5. Results and Discussion 39

Figure 5.2: Performance for different number of iterations for RF. Boldface marks
best performance in the respective metric.

200 400 600 800 1000
Number of iterations

0.65

0.70

0.75

0.80

0.85

0.90

NDCG@1
NDCG@10

Figure 5.3: Performance for different values of feature sampling rate.

0.1 0.2 0.3 0.4 0.5
Features sampling rate

0.65

0.70

0.75

0.80

0.85

0.90

NDCG@1
NDCG@10

feature is normalized using its mean and standard deviation (Z-score), or (iv) each fea-

ture is normalized by its min/max values (Linear). The results confirm that our choice

of selecting No-norm as our default normalization method is safe, as it is one of the

best performing methods. No-norm significantly outperforms Sum and marginally out-

performs Linear normalization in all metrics. However, there is no significant difference

Chapter 5. Results and Discussion 40

Table 5.5: Results for different feature normalization methods. Boldface marks best
performance in the respective metric. Significance is tested against No-norm.

Normalization NDCG@1 NDCG@10 Perfect@1 Excellent@1 ERR@1 ERR@10 PerfectRR ExcellentRR

No-norm 0.7448 0.8719 0.5222 0.6667 0.5931 0.7024 0.6039 0.7590

Z-score 0.7514 0.8813 0.5000 0.6778 0.5854 0.7032 0.5939 0.7720

Linear 0.7069 0.8625 0.4444 0.6111 0.5389 0.6808 0.5688 0.7367

Sum 0.6107O 0.8285O 0.3556O 0.5222O 0.4618O 0.6327O 0.5119O 0.6841O

between No-norm and Z-score in any metric.

5.3 Feature analysis

In this section we try to answer research question (RQ3), which examines which features

among the ones we devised are the most important for our task. Here we group features

per type and per unit. By feature units we refer to single features, e.g. Length(s), or

other features that are actually sets of features, such as the Part-of-Speech distribution

of the sentence, which consists of 4 features (percentages of verbs, nouns, adjectives and

others).

We analyse the impact of different feature combinations on retrieval performance. The

metric we optimize for is NDCG@1 but the effect in performance is stable across metrics.

Nevertheless, we also report on NDCG@10 for completeness. Furthermore, we provide

a high-level overview of the cost of calculating the features.

5.3.1 Per feature type performance

In this experiment, we group the features per type and examine the effect of each in

retrieval performance.

Table 5.6 shows the results for different feature types, combined using RF. It is clear from

this table that when feature types are tested in isolation, source features can perform

remarkably well. The source features type is the only feature type that does not perform

significantly worse than the full feature set. This is because source features encode

information about the documents from which the sentences were extracted from, in our

case Wikipedia articles. Therefore, sentences extracted from the Wikipedia article of

either the entities in the entity pair appear more likely to be relevant. The fact that entity

features form the second best group confirms that introducing features based on entities

identified in the sentences is beneficial for this task. Note that no individual feature

Chapter 5. Results and Discussion 41

Table 5.6: Performance per feature type. The features were combined using RF.
Significance is tested against “all features”.

Features NDCG@1 NDCG@10

All features 0.7448 0.8719

Source 0.7087 0.8397

Entity 0.6418O 0.8151O

Text 0.5762H 0.7890H

Relation 0.5521H 0.7969H

Table 5.7: Performance when removing one feature type at a time from the full feature
set. The features are combined using RF. Significance is tested against “all features”.

Features NDCG@1 NDCG@10

All features 0.7448 0.8719

All without entity 0.7465 0.8719

All without relation 0.7353 0.8635

All without text 0.7204 0.8662

All without source 0.7060 0.8515

type performs better than the full feature set, a result that confirms the importance of

combining different feature types.

Table 5.7 shows how performance varies when removing one feature type at a time from

the full feature set. The results are not significantly different against the model that

uses the full feature set for any of these settings, thus no safe conclusions can be derived

for the impact of every feature type. However, it appears that source features are the

ones with the highest impact. Also, even though the text features did not perform well

in isolation, it appears that they are beneficial when combined with the other features.

The results suggest that RF can effectively select the important features and arrive to

reasonable performance. An interesting finding of this experiment is that the model

can achieve competitive performance even without the source or the relation dependent

features.

5.3.2 Per feature unit performance

In this experiment we examine the effect of different feature units on retrieval perfor-

mance.

Chapter 5. Results and Discussion 42

We first report on individual feature units performance in table 5.8. Note that for

some entity pairs the feature values were the same for all sentences, therefore RF was

not able to produce even a random prediction. Therefore, in this experiment. we

combine the features using CoordAscent with ties broken arbitrarily. In this table we

observe similar trends to the ones observed in table 5.6 where we combined features

inside each feature type. One important difference is that the best individual relation

feature unit, ScoreLCLabels(ea, eb, r, s), achieves better performance than when com-

bining all relation features using machine learning. Another interesting result is that

among the relation features, the ones that take into account phrases in word2vec(r)

achieve the best performance. This suggests that using word2vec vectors for selecting

the phrases to represent the relations is beneficial for this task. The fact that all individ-

ual source features, DocCount(e, d(s)), SentenceSource(e, d(s)) and Position(s, d(s))

are among the best performing features confirms the importance of source features,

highlighted in the previous section. The results also highlight the importance of entity

features. ContainsBothLink(e, s), which indicates the presence of both the entities of

the entity pair in the sentence and NumCommLinks(ea, eb, s), which indicates whether

a sentence contains common links of the entity pair, are the best performing entity

feature units. In addition, although POS(s) is one of the worst performing features,

BetweenPOS(ea, eb, s) performs reasonably well, a result confirming the importance of

involving entities in sentence representation. The feature accounting for the length of

the sentence achieves the best performance among the text features. Note that no in-

dividual feature unit is able to significantly outperform any of the baselines, a result

confirming the need of using machine learning to achieve reasonable performance.

While we can get an indication of features importance by examining them in isolation,

we also examine which features are considered important by the learning algorithm.To

this end, we utilize a greedy feature selection procedure. This procedure starts with a

baseline and greedily adds the feature with the biggest gain in performance until no other

feature can be added that can improve the performance. Note that as this procedure is

greedy, it may skip features that are very correlated and therefore provide similar gain

in performance with other features. For this reason, if a feature is skipped during the

procedure, this does not necessarily mean that the feature is not important. In order to

obtain as accurate results as possible regarding feature importance, we take the average

over several runs when adding each feature.

Our first greedy feature selection experiment starts with a baseline that combines

the B5 features. B5 features use titles, labels or redirects for representing the en-

tities and Lucene and BM25 as the ranking functions. In this experiment only

the SentenceSource(e, d(s)), Position(s, d(s)) and LeftPOS(ea, eb, s) were added

before the procedure stopped. This procedure achieved a surprisingly high score

Chapter 5. Results and Discussion 43

Table 5.8: Performance per feature unit. Units that consist of a set of features are
combined using CoordAscent. Boldface marks best performing feature in the respective

metric among the features of the same feature type.

Feature NDCG@1 NDCG@10

Text features

AverageIDF (s) 0.3922 0.7040
SumIDF (s) 0.4414 0.7324
Length(s) 0.4632 0.7397
Density(s) 0.4360 0.7056
POS(s) 0.3749 0.6807

Entity features

NumEntities(s) 0.3780 0.6828
ContainsLink(e, s) 0.5278 0.7645
ContainBothLinks(e, s) 0.4416 0.7099
AverageInLinks(s) 0.4286 0.7236
SumInLinks(s) 0.4569 0.7327
Spread(ea, eb, s) 0.4824 0.7171
BetweenPOS(ea, eb, s) 0.4358 0.7245
LeftPOS(ea, eb, s) 0.4545 0.7384
RightPOS(ea, eb, s) 0.3111 0.6524
NumEntitiesLeft(ea, eb, s) 0.3414 0.6868
NumEntitiesRight(ea, eb, s) 0.3411 0.6828
NumEntitiesBetween(ea, eb, s) 0.3328 0.6907
ContainsCommLinks(ea, eb, s) 0.4407 0.7397
NumCommLinks(ea, eb, s) 0.4947 0.7543

Relation features

MatchTerm(r, s) 0.3666 0.6963
MatchSyn(r, s) 0.3404 0.6928
Word2vecScore(r, s) 0.4824 0.7497
MaxWord2vecScore(r, s) 0.5247 0.7627
MatchTermOrSyn(r, s) 0.3515 0.6936
MatchTermOrWord2vec(r, s) 0.4823 0.7618
MatchTermOrSynOrWord2vec(r, s) 0.4743 0.7554
ScoreLCLabels(ea, eb, r, s) 0.5587 0.7842
ScoreBM25Labels(ea, eb, r, s) 0.5447 0.7787

Source features (Wikipedia)

Position(s, d(s)) 0.4881 0.7425
SentenceSource(e, d(s)) 0.5335 0.7751
DocCount(e, d(s)) 0.5656 0.7889

(NDCG@1 = 0.7484), confirming the importance of source features in combination

with relation-informed retrieval models for this task.

We might want our methods to be independent of the source of the sentences, thereby

making them more generic and hopefully applicable to other domains. In order to

examine the effect of the features that not aware of the source of the sentences, we

repeat the previous experiment with the same baseline but we remove the source fea-

tures from the feature candidates. Table 5.9 depicts the results of this experiment. We

Chapter 5. Results and Discussion 44

Table 5.9: Greedy feature selection per feature unit, excluding source features. The
features were combined using RF and averaged over 3 runs.

Features NDCG@1 NDCG@10

B5 (LC+BM25) 0.5402 0.7837

+Length(s) 0.5600 0.7917

+ContainsLink(e, s) 0.5983 0.8141

+MaxWord2vecScore(r, s) 0.6616 0.8361

+LeftPOS(ea, eb, s) 0.6897 0.8457

+BetweenPOS(ea, eb, s) 0.6925 0.8506

+Spread(ea, eb, s) 0.7418 0.8684

+NumCommLinks(ea, eb, s) 0.7481 0.8664

+MatchTermOrSynOrWord2vec(r, s) 0.7564 0.8660

observe that the procedure selects at least one feature unit from each of the entity, text

and relation feature types. The features selected during the greedy procedure confirm

that modeling this task with entities is beneficial, as five entity-aware features were

selected. These are Spread(ea, eb, s), which measures the spread of the two entities

in the sentence and gives the second larger gain in performance, LeftPOS(ea, eb, s),

BetweenPOS(ea, eb, s), ContainsLink(e, s) and NumCommLinks(ea, eb, s). The fact

that the greedy procedure selected two features that are aware of the relation and

its similar terms, MaxWord2vecScore(r, s) and MatchTermOrSynOrWord2vec(r, s),

confirms the importance of matching phrases similar to the relation, obtained using

word2vec vectors and Wordnet. Length(s) was the only purely text feature selected in

the procedure.

We repeat the greedy feature selection procedure without using the source features in

order to make sure that the greedy selection is not heavily dependent on the learn-

ing algorithm or the baseline. We combine the features using CoordAscent and use

B5-LC-Labels as the baseline. The results are shown in table 5.10. Interestingly, the

first four features selected, MatchTermOrSynOrWord2vec(r, s), ContainsLink(e, s),

Spread(ea, eb, s) and NumCommLinks(ea, eb, s) were also selected in our previous

greedy selection experiment, confirming their importance for this task. In addition,

although POS(s), AverageIDF (s) and NumEntitiesRight(ea, eb, s) were among the

worst individual feature units when tested in isolation (see table 5.8), they can improve

performance when combined using machine learning.

Note that we are aware of the existence of other feature importance analysis tools, such

as mutual information, information gain [82] or correlation feature selection [53], but we

leave the exploration of these for future work.

Chapter 5. Results and Discussion 45

Table 5.10: Greedy feature selection per feature unit, excluding source features. The
features were combined using CoordAscent and averaged over 5 runs.

Features NDCG@1 NDCG@10

B5-LC-Labels 0.5587 0.7842

+MatchTermOrSynOrWord2vec(r, s) 0.6069 0.8078

+ContainsLink(e, s) 0.6642 0.8271

+Spread(ea, eb, s) 0.6723 0.8279

+NumCommLinks(ea, eb, s) 0.7040 0.8503

+AverageIDF (s) 0.7085 0.8469

+POS(s) 0.7225 0.8495

+NumEntitiesRight(ea, eb, s) 0.7332 0.8504

5.3.3 Features calculation cost

Regarding the cost of computing the features for each sentence, we can split the features

in two categories. The first category contains features that are only dependent on the

sentence itself, which include all the features in text and source features types and

also NumEntities(s), AverageInLinks(s) and SumInLinks(s). The second category

contains features that are dependent on the entity pair and/or the relation of interest,

which include all the rest entity features and all the relation features. The features of

the first category can be pre-computed at indexing time and only require collection term

statistics which are trivial to compute and a trained POS tagger, for which very efficient

implementations exist.

In a dynamic scenario, where the entity pair and the relation of interest are not known

beforehand, the features of the second category should be computed at run time. The

entity features require entity matching, POS distribution calculation for parts of the

sentence and matching of common entities. For performing entity matching only the

positions of the entities are needed. These are stored in the index during the entity

linking step, which happens at indexing time. For calculating the POS distribution for

parts of the sentence we only need the pre-computed POS tags of the whole sentence and

the positions of the entities in the sentence. The process of obtaining the common entities

of an entity pair needs the calculation of similarities between Wikipedia pages. This must

happen only once per entity pair, making the cost of the similarity calculations negligible.

The relation features include matching of relation terms and also matching of phrases

similar to the relation. These phrases need to be obtained from Wordnet synonyms and

from operations on word2vec phrase vectors, as described in Section 3.2.2.3. For this we

require a Wordnet index which can easily be plugged in our system and operations on

Chapter 5. Results and Discussion 46

Table 5.11: Results for different machine learning algorithms. Boldface marks best
performance in the respective metric. Significance is tested against RF.

Algorithm NDCG@1 NDCG@10 Perfect@1 Excellent@1 ERR@1 ERR@10 PerfectRR ExcellentRR

RF 0.7448 0.8719 0.5222 0.6667 0.5931 0.7024 0.6039 0.759

GBRT 0.6806 0.8426 0.4444 0.6111 0.5319 0.6652 0.5604 0.7250

CoordAscent 0.6684 0.8549 0.4444 0.5889 0.5306 0.6704 0.5671 0.7164

RankBoost 0.6481O 0.8425O 0.4111O 0.5444O 0.5021O 0.6491O 0.5377O 0.6830O

LambdaMART 0.6361H 0.8262H 0.4333O 0.5667H 0.5049H 0.6471H 0.5543H 0.6950H

AdaRank 0.4077H 0.7104H 0.1889H 0.3222H 0.2965H 0.5104H 0.3910H 0.5361H

ListNet 0.3498H 0.6899H 0.1667H 0.2556H 0.2597H 0.4862H 0.3730H 0.4971H

RankNet 0.3460H 0.6846H 0.1667H 0.2444H 0.2569H 0.4790H 0.3665H 0.4852H

word2vec vectors, which need to be trained on a large text collection. The training of the

word2vec phrases vectors can be done offline. In the case where we are only interested

in pre-defined relations, the phrases similar to each relation can be pre-computed. In

addition, in order to calculate relation features which are based on IR retrieval models,

we can use existing efficient implementations of these models.

Note that in a real-world scenario a search engine uses a knowledge base of pre-defined

entities and relations. In this scenario, all the previous computations can happen offline

and thus the search engine can provide relationship explanations without extra cost.

5.4 Machine learning algorithms

In this section we address the first part of research question (RQ4) which regards the

effect of different machine learning (learning to rank) algorithms on the performance.

Table 5.11 shows the results for the machine learning algorithms we examine. Note that

AdaRank, LambdaMART and CoordAscent are optimized for NDCG@1, whereas the

rest algorithms have internal optimization criteria. Also note that we use the default

RankLib parameters for all the algorithms, thus no tuning is performed. We observe that

RF outperforms all the rest algorithms for all metrics. The improvements are significant

for RankNet, ListNet, AdaRank, RankBoost and LambdaMART for every metric but

not significant for GBRT and CoordAscent for any metric. This result suggests that

even though RF does not significantly outperform every other algorithm, it can be

safely selected as the learning algorithm for this task, as it can effectively select and

combine the most important features.

The results of CoordAscent and RF are not the same across different runs because of

the nature of the algorithms. Figure 5.4 shows how NDCG@1 varies over 10 runs for

Chapter 5. Results and Discussion 47

Figure 5.4: Box plot depicting NDCG@1 scores for the machine learning algorithms
we consider. RF and CoordAscent were ran for 10 times, while the rest were ran once.
Each box shows the median score (red line) and the upper and lower quartiles (up
and bottom blue lines). The maximum and lower scores are shown outside each box
with black horizontal lines, connected with the box with vertical lines (whiskers) which

indicate score variability.

Ra
nk

Ne
t

Li
st

Ne
t

Ad
aR

an
k

La
m

bd
aM

AR
T

Ra
nk

Bo
os

t

Co
or

dA
sc

en
t

GB
RT RF

0.3

0.4

0.5

0.6

0.7

0.8
ND

CG
@

1

all the algorithms. Performance for RF is relatively stable, whereas we observe much

higher variance for CoordAscent.

It is interesting to note that the two best performing algorithms, RF and GBRT, are

both pointwise learning to rank algorithms. Pointwise algorithms outperformed pairwise

and listwise algorithms for a similar task, question answering [1].

5.5 Comparison to a competitive system

In this section we try to answer research question (RQ5), which examines how our

method works compared to a competing system on a separate dataset that contains

popular entities. We split this experiment in two parts. In the first part we evaluate

how our method performs on this dataset and in the second part we perform a com-

parison between our method and a competitive system. Below we describe the dataset

construction and present the results of this experiment.

Chapter 5. Results and Discussion 48

5.5.1 Dataset

5.5.1.1 Entity pairs

In order to construct an entity pairs dataset that contains popular entities, we first

sample entities from the top 2000 popular entities among search engine users using the

entities’ popularity distribution described in Section 4.1.1. We then sample entity pairs

that contain at least one of these popular entities, excluding entity pairs that are also

included in the dataset described in Section 4.1.1 or did not have a candidate sentence.

This results in 156 entity pairs with a total of 1871 sentences and an average of 11.99

sentences per entity pair. The maximum number of sentences for an entity pair is 203

and the minimum is 1.

We evaluate performance in the case where only the top-ranked relationship explanation

sentence is shown to the user. In order to obtain a single sentence for each entity pair,

we rank the candidate sentences using a model trained on the dataset described in

Section 4.1.1. This model was trained using the full feature set and the random forest

algorithm. We use the best performing parameter settings of the previous experiments.

For each entity pair, we select the sentence with the highest score.

In order to compare the relationship explanations provided by our method to a state-of-

the-art competing system, we utilize Google’s relationship explanations. We manually

obtain these explanations using Google’s search engine. Note that not every entity pair

in our dataset appears in the recommended entities of Google’s search engine and vice

versa, as the entity recommendation algorithms are different. Out of the 156 entity pairs

in our dataset, 86 of them appear in Google’s search engine recommendations, while 81

of these contain an explanation for the entity pair.

5.5.1.2 Annotation

For the first part of this experiment, we asked one human annotator to annotate the

relationship explanation sentences provided by our method for each pair with respect to a

number of different dimensions. More specifically, each sentence was judged by whether

the relation of interest was explained at a satisfactory level (directly or indirectly),

whether the sentence was self-contained and whether the sentence is a candidate for

compression. Sentences that explain a relation indirectly might be of the form “Actor

A co-stars with B and C in movie X”. In this case, the relation between entities B and

C can be derived indirectly by inspecting the sentence. Sentences that are not self-

contained might miss the names of some entities, e.g. “the film”, or might be unclear

Chapter 5. Results and Discussion 49

in terms of the time period they are referring to, e.g. “three years later”. Examples of

sentences that might be candidates for compression were presented in Section 5.2.2.

The second part of this experiment regards the comparison between our method and

Google’s relationship explanations. To this end, we asked one annotator to compare

the explanations for the entity pairs that are provided by both systems (81 pairs). The

explanations were judged in terms of explanation quality, i.e. which of the two is better

for describing the particular relation of interest. They were also annotated in terms of

detail level, i.e. which of the two gives more details about the entity pair.

5.5.2 Results and analysis

The results of the first part of the experiment which regards the performance of our

method on the popular entity pairs dataset can be summarized as follows. In 80% of

the cases the top retrieved sentence contained the relation of interest of the entity pair.

Out of these cases, 67% explain the relation of interest directly, 72% are self-contained

and 69% could be considered for compression. From these results we can derive that

even though our automatic method fails in some cases, it performs sufficiently well.

We analyse our results by examining some specific examples. Table 5.12 shows some

interesting examples of top-ranked sentences. We have already discussed some failure

cases that appear here together with suggestions for improvements in Section 5.2.2. An

example sentence that explains the relation directly and is self-contained is sentence

(#1). Sentence (#2) is also self-contained but it explains the relation indirectly. Note

that for some of these cases, there is no candidate sentence among the ones extracted

that explains the relation in a more direct way. Sentences (#3) and (#4) are not

self-contained. Sentence (#3) explains the relation directly but misses the name of an

entity (“the film”). This can be addressed by using a more sophisticated co-reference

resolution system. Sentence (#4) also explains the relation directly but it is not clear to

which time period it is referring (“the following year”). Finally, sentence (#5) does not

explain the relation of interest. In fact, we observed that this particular type of relation

(Athlete PlaysSameSportTeamAs Athlete) was impossible to be explained by sentences

from Wikipedia in most of the cases. Further exploration is needed in order to address

these issues, but this is left for future work.

Since our model is trained using the random forest algorithm, it outputs a confidence

score for each sentence. We examine whether we can use a threshold on this score

in order to improve the precision of our method when applied in a real-world system.

Figure 5.5 shows how the performance varies for different values of the threshold. We

observe that applying a threshold can be beneficial for improving precision while keeping

Chapter 5. Results and Discussion 50

Figure 5.5: Precision and recall for different values of the threshold. In this plot, a
sentence is relevant if it explains the relation either directly or indirectly.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Threshold value

0.0

0.2

0.4

0.6

0.8

1.0

Precision
Recall

Table 5.12: Examples of top-ranked sentences. Each group in the table contains an
entity pair, the relation of interest and the top ranked sentence.

(#1) Ben Affleck - Bruce Willis (MovieActor CoCastsWith MovieActor)

Affleck starred in “Armageddon” (1998) opposite Bruce Willis.

(#2) Hugh Jackman - Kate Winslet (MovieActor CoCastsWith MovieActor)

Katie Finneran’s most recent film was “Movie 43” in which she played Angie and also
appeared alongside Hugh Jackman and Kate Winslet.

(#3) Bryan Singer - Tom Cruise (MovieDirector Directs MovieActor)

The film stars Tom Cruise and is directed by Bryan Singer.

(#4) Cameron Diaz - Tom Cruise (MovieActor CoCastsWith MovieActor)

The following year Cruise starred in the romantic thriller ”Vanilla Sky” (2001) with
Cameron Diaz and Penélope Cruz.

(#5) Cristiano Ronaldo - Karim Benzema (Athlete PlaysSameSportTeamAs Athlete)

Karim Benzema was also shortlisted by the French magazine France Football for the
2008 Ballon d’Or award, won by Cristiano Ronaldo.

recall at a reasonable level. A “sweet spot” for the threshold on this dataset is 0.15, for

which our method achieves a precision of 88% and a recall of 93%.

Table 5.13 shows the results of the second part of this experiment, in which we compare

our method to Google’s relationship explanations. In terms of explanation quality, our

method performs at least as good as Google’s system in 61% of the cases. Note that

Chapter 5. Results and Discussion 51

Table 5.13: Side by side evaluation between our method (Y) and Google’s relationship
explanations (G). G ∼ Y indicates the number of cases for which the results were
indistinguishable in terms of quality, G >Y indicates the number of cases for which
Google’s result was better than ours and >G indicates the number of cases for which

Google’s result was worse than ours.

Quality

G ∼ Y 50

G >Y 29

Y >G 2

Level of detail

G ∼ Y 33

G >Y 27

Y >G 21

we do not have any indication of how Google’s system produces the explanations, but

our guess is that they are produced by combining evidence from a knowledge base using

sentence templates. These explanations might also involve human editing. Because of

this, that system achieves almost perfect accuracy. On the other hand, our method only

relies on a text corpus for extracting the sentences. This makes it more generic, as it is

able to provide explanations for virtually every entity pair for which a good candidate

sentence exists. We have seen in figure 5.5 that a threshold can be used in order to

further improve the precision of our method.

As we can see in table 5.13, there is no clear winner in terms of explanation detail

level. As our method extracts and ranks sentences from Wikipedia, it is able to pro-

duce explanations enriched with details about the relation of the entity pair. For ex-

ample, our method gives the sentence “Christopher Columbus married Filipa Moniz

Perestrelo, daughter of the Porto Santo governor and Portuguese nobleman of Lombard

origin Bartolomeu Perestrello.” for the entity pair “Christopher Columbus” - “Filipa

Moniz Perestrelo” (Person IsSpouseOf Person), whereas Google’s system outputs the

sentence “Filipa Moniz Perestrelo was Christopher Columbus’s spouse.” for the same

pair.

On the other hand, Google’s system is able to give more details in cases where two

entities share more than one relation. An example of this is entity pair “Ben Affleck”

- “Jennifer Garner” (Person IsSpouseOf Person), for which our method outputs the

sentence “Ben Affleck has been married to Jennifer Garner since June 2005, and they

have two daughters and a son.”, whereas Google’s system outputs the sentences “Ben

Affleck and Jennifer Garner have been married since 2005. Both appear in Pearl Harbor

and Daredevil.”. The second sentence of Google’s system gives details about another

Chapter 5. Results and Discussion 52

relation of the entity pair, (MovieActor CoCastsWith MovieActor). We plan to address

this challenge by combining multiple sentences in future work.

Chapter 6

Conclusion and future work

This work presents a method for explaining pre-defined relations between knowledge

base entities with sentences. Our method extracts candidate sentences that refer to each

entity pair, identifies entities in them and ranks the candidate sentences by combining

a rich set of features using state-of-the-art supervised machine learning algorithms. In

a commercial search engine scenario where a knowledge base containing entities and

pre-defined relations is used, both sentence extraction and sentence ranking can be done

offline, thus providing the user with relation explanations with negligible cost.

We conducted several experiments in order to examine the effect of different features on

retrieval performance. Features dependent on the source document of the sentences were

found to be very important for this task. Also, we found that state-of-the-art phrase

vector representations are very helpful for identifying phrases that refer to the relation

of interest, especially when combined with state-of-the-art retrieval models. We found

that simple features that account for the presence or the position of the entity pair

in a sentence can be helpful. Furthermore, features which exploit similarity measures

between the entities based on Wikipedia structure in order to identify the presence

of other entities related to the entity pair can also be beneficial. Finally, we found

that features only dependent on the sentence text can also provide improvements in

performance.

Note that our features do not require expensive linguistic analysis tools for sentence

pre-processing such as dependency parsing or semantic parsing (used for example for

QA [92]). Our sentence pre-preprocessing step only requires a POS tagger. The features

we devised mainly focus on how to represent the existence of entities and relations in

sentences, most of them being easy to compute. This makes our method relatively

efficient even in a dynamic scenario, where the relations are not pre-defined.

53

Chapter 6. Conclusion and Future Work 54

In addition, we benchmarked several learning to rank algorithms and found that random

forest is the most appropriate algorithm for this task among the ones that we examined.

The experiments concerning the effect of parameter settings on the performance of this

algorithm showed that the algorithm is relatively insensitive to parameter settings. We

further analysed the results by providing specific entity pair examples for which our

method failed to provide the best possible sentence ranking, together with suggestions

for improvements.

Furthermore, we have seen that our method can perform reasonably well on an entity

pairs dataset that contains popular entities, producing a satisfactory explanation for

80% of the cases. On this dataset, our method is able to perform at least as good as a

state-of-the-art competing system for 61% of the cases. In addition, our method gives

at least as many details as the competing system for 66% of the cases.

There are multiple future research directions that stem from this work. First, we would

like to evaluate our method on a larger dataset consisting of entity pairs and relations of

any type. This would require to change the heuristic co-reference resolution step which

is designed especially for people entities to a more sophisticated approach. We would

also like to evaluate our method on other domains. A possible source of sentences is the

content of the web pages that are returned from search engines when searching for an

entity pair. For this we would have to exclude the Wikipedia-dependent features from

our features set, which we showed that are important but not indispensable for this task.

Another research direction is the investigation of the effect of having a different trained

model for each relation type, which would require a larger training dataset. A similar

idea was investigated in the context of QA [130].

Our model is able to achieve competitive performance, even without the relation depen-

dent features. An idea for future work is to extract the most logical relation(s) between

two entities based on the top-ranked sentences of a relation-independent version of our

method. This might involve a top-level classifier that decides whether a relation exists

between two entities. Another future direction might be to aggregate different learning

to rank algorithms in a single rank using supervised aggregation methods, an idea suc-

cessfully applied for the task of QA [1]. We have shown that our method might benefit

from the inclusion of a sentence compression pre-processing step [25, 66]. An investiga-

tion of sentence compression techniques with a user study and of ways to modify these

techniques in order to count for the characteristics of this task is in our plans.

Another possible research direction is the inclusion of a summarization module that

automatically combines sentences that cover different aspects of the relation on the top

of the ranking or even combines different relations of the entity pair. For example, two

persons might be married and also co-appear in a movie. Some preliminary experiments

Chapter 6. Conclusion and Future Work 55

showed that a strong multi-sentence compression algorithm based on redundancy [42]

performs poorly for this task, suggesting the need for further development. We would

also like to explore whether sentence fusion techniques are appropriate for this task [43].

Furthermore, special attention should be given when combining temporal dependent

sentences. A similar idea has been investigated by a commercial search engine but the

methods used are not publicly available.1

At the time this work was written, the proposed method was considered to be further

developed for production use by a major commercial search engine, Yahoo.

1http://blogs.bing.com/search/2014/02/21/timeline-understanding-important-events-in-

peoples-lives/

http://blogs.bing.com/search/2014/02/21/timeline-understanding-important-events-in-peoples-lives/
http://blogs.bing.com/search/2014/02/21/timeline-understanding-important-events-in-peoples-lives/

Bibliography

[1] A. Agarwal, H. Raghavan, K. Subbian, P. Melville, R. D. Lawrence, D. C. Gondek,

and J. Fan. Learning to rank for robust question answering. In Proceedings of the

21st ACM international conference on Information and knowledge management,

pages 833–842. ACM, 2012.

[2] G. Agarwal, G. Kabra, and K. C.-C. Chang. Towards rich query interpretation:

walking back and forth for mining query templates. In Proceedings of the 19th

international conference on World wide web, pages 1–10. ACM, 2010.

[3] E. Agichtein and L. Gravano. Snowball: Extracting relations from large plain-text

collections. In Proceedings of the fifth ACM conference on Digital libraries, pages

85–94. ACM, 2000.

[4] E. Agichtein, S. Lawrence, and L. Gravano. Learning to find answers to questions

on the web. ACM Transactions on Internet Technology (TOIT), 4(2):129–162,

2004.

[5] J. Allan, C. Wade, and A. Bolivar. Retrieval and novelty detection at the sentence

level. In Proceedings of the 26th annual international ACM SIGIR conference on

Research and development in informaion retrieval, pages 314–321. ACM, 2003.

[6] P. André, J. Teevan, S. T. Dumais, et al. Discovery is never by chance: designing

for (un) serendipity. In Proceedings of the seventh ACM conference on Creativity

and cognition, pages 305–314. ACM, 2009.

[7] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval, volume 463.

ACM press New York, 1999.

[8] N. Balasubramanian and S. Cucerzan. Topic pages: An alternative to the ten blue

links. In Semantic Computing (ICSC), 2010 IEEE Fourth International Confer-

ence on, pages 353–360. IEEE, 2010.

[9] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni. Open

information extraction for the web. In IJCAI, volume 7, pages 2670–2676, 2007.

56

Bibliography 57

[10] M. Bansal, K. Gimpel, and K. Livescu. Tailoring continuous word representations

for dependency parsing. In Proceedings of the Annual Meeting of the Association

for Computational Linguistics, 2014.

[11] R. Blanco and H. Zaragoza. Finding support sentences for entities. In Proceedings

of the 33rd international ACM SIGIR conference on Research and development in

information retrieval, pages 339–346. ACM, 2010.

[12] R. Blanco, B. B. Cambazoglu, P. Mika, and N. Torzec. Entity recommendations

in web search. In The Semantic Web–ISWC 2013, pages 33–48. Springer, 2013.

[13] I. Bordino, G. De Francisci Morales, I. Weber, and F. Bonchi. From machu picchu

to rafting the urubamba river: anticipating information needs via the entity-query

graph. In Proceedings of the sixth ACM international conference on Web search

and data mining, pages 275–284. ACM, 2013.

[14] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[15] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and re-

gression trees. CRC press, 1984.

[16] S. Brin. Extracting patterns and relations from the world wide web. In The World

Wide Web and Databases, pages 172–183. Springer, 1999.

[17] M. Bron, K. Balog, and M. De Rijke. Ranking related entities: components and

analyses. In Proceedings of the 19th ACM international conference on Information

and knowledge management, pages 1079–1088. ACM, 2010.

[18] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hul-

lender. Learning to rank using gradient descent. In Proceedings of the 22nd inter-

national conference on Machine learning, pages 89–96. ACM, 2005.

[19] C. J. Burges, K. M. Svore, P. N. Bennett, A. Pastusiak, and Q. Wu. Learning to

rank using an ensemble of lambda-gradient models. In Yahoo! Learning to Rank

Challenge, pages 25–35, 2011.

[20] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li. Context-aware query

suggestion by mining click-through and session data. In Proceedings of the 14th

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 875–883. ACM, 2008.

[21] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: from pairwise

approach to listwise approach. In Proceedings of the 24th international conference

on Machine learning, pages 129–136. ACM, 2007.

Bibliography 58

[22] O. Chapelle and Y. Chang. Yahoo! learning to rank challenge overview. In Yahoo!

Learning to Rank Challenge, pages 1–24, 2011.

[23] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan. Expected reciprocal rank

for graded relevance. In Proceedings of the 18th ACM conference on Information

and knowledge management, pages 621–630. ACM, 2009.

[24] J. C. K. Cheung and X. Li. Sequence clustering and labeling for unsupervised

query intent discovery. In Proceedings of the fifth ACM international conference

on Web search and data mining, pages 383–392. ACM, 2012.

[25] J. Clarke and M. Lapata. Global inference for sentence compression: An integer

linear programming approach. J. Artif. Intell. Res.(JAIR), 31:399–429, 2008.

[26] K. Collins-Thompson, P. Ogilvie, Y. Zhang, and J. Callan. Information filtering,

novelty detection, and named-page finding. In TREC, 2002.

[27] D. Cossock and T. Zhang. Subset ranking using regression. In Learning theory,

pages 605–619. Springer, 2006.

[28] K. Crammer, Y. Singer, et al. Pranking with ranking. In NIPS, volume 14, pages

641–647, 2001.

[29] N. Craswell and M. Szummer. Random walks on the click graph. In Proceed-

ings of the 30th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 239–246. ACM, 2007.

[30] S. Cucerzan. Large-scale named entity disambiguation based on wikipedia data.

In EMNLP-CoNLL, volume 7, pages 708–716. Citeseer, 2007.

[31] N. Dalvi, R. Kumar, B. Pang, R. Ramakrishnan, A. Tomkins, P. Bohannon,

S. Keerthi, and S. Merugu. A web of concepts. In Proceedings of the twenty-

eighth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems, pages 1–12. ACM, 2009.

[32] A. P. De Vries, A.-M. Vercoustre, J. A. Thom, N. Craswell, and M. Lalmas.

Overview of the inex 2007 entity ranking track. In Focused Access to XML Docu-

ments, pages 245–251. Springer, 2008.

[33] G. Demartini, T. Iofciu, and A. P. De Vries. Overview of the inex 2009 entity

ranking track. In Focused Retrieval and Evaluation, pages 254–264. Springer,

2010.

[34] A. Doko, M. Štula, and D. Stipaničev. A recursive tf–isf based sentence retrieval

method with local context. International Journal of Machine Learning and Com-

puting, 3(2):195–200, 2013.

Bibliography 59

[35] G. Erkan and D. R. Radev. Lexrank: Graph-based lexical centrality as salience in

text summarization. J. Artif. Intell. Res.(JAIR), 22(1):457–479, 2004.

[36] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open information

extraction. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing, pages 1535–1545. Association for Computational Linguistics,

2011.

[37] L. Fang, A. D. Sarma, C. Yu, and P. Bohannon. Rex: explaining relationships

between entity pairs. Proceedings of the VLDB Endowment, 5(3):241–252, 2011.

[38] C. Fellbaum. WordNet. Wiley Online Library, 1998.

[39] R. T. Fernández, D. E. Losada, and L. A. Azzopardi. Extending the language

modeling framework for sentence retrieval to include local context. Information

Retrieval, 14(4):355–389, 2011.

[40] P. Ferragina and U. Scaiella. Tagme: on-the-fly annotation of short text fragments

(by wikipedia entities). In Proceedings of the 19th ACM international conference

on Information and knowledge management, pages 1625–1628. ACM, 2010.

[41] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyanpur,

A. Lally, J. W. Murdock, E. Nyberg, J. Prager, et al. Building watson: An

overview of the deepqa project. AI magazine, 31(3):59–79, 2010.

[42] K. Filippova. Multi-sentence compression: Finding shortest paths in word graphs.

In Proceedings of the 23rd International Conference on Computational Linguistics,

pages 322–330. Association for Computational Linguistics, 2010.

[43] K. Filippova and M. Strube. Sentence fusion via dependency graph compression.

In Proceedings of the Conference on Empirical Methods in Natural Language Pro-

cessing, pages 177–185. Association for Computational Linguistics, 2008.

[44] S. Fisher and B. Roark. Feature expansion for query-focused supervised sentence

ranking. In Document Understanding (DUC 2007) Workshop Papers and Agenda,

2007.

[45] J. L. Fleiss, B. Levin, and M. C. Paik. Statistical methods for rates and proportions.

John Wiley & Sons, 2013.

[46] A. Foster and N. Ford. Serendipity and information seeking: an empirical study.

Journal of Documentation, 59(3):321–340, 2003.

[47] Y. Freund and R. E. Schapire. A desicion-theoretic generalization of on-line learn-

ing and an application to boosting. In Computational learning theory, pages 23–37.

Springer, 1995.

Bibliography 60

[48] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm

for combining preferences. The Journal of machine learning research, 4:933–969,

2003.

[49] J. H. Friedman. Greedy function approximation: a gradient boosting machine.

Annals of Statistics, pages 1189–1232, 2001.

[50] J. Guo, G. Xu, X. Cheng, and H. Li. Named entity recognition in query. In

Proceedings of the 32nd international ACM SIGIR conference on Research and

development in information retrieval, pages 267–274. ACM, 2009.

[51] Z. GuoDong, S. Jian, Z. Jie, and Z. Min. Exploring various knowledge in relation

extraction. In Proceedings of the 43rd annual meeting on association for com-

putational linguistics, pages 427–434. Association for Computational Linguistics,

2005.

[52] B. Hachey, W. Radford, and J. R. Curran. Graph-based named entity linking with

wikipedia. In Web Information System Engineering–WISE 2011, pages 213–226.

Springer, 2011.

[53] M. A. Hall. Correlation-based feature selection for machine learning. PhD thesis,

The University of Waikato, 1999.

[54] X. Han, L. Sun, and J. Zhao. Collective entity linking in web text: a graph-

based method. In Proceedings of the 34th international ACM SIGIR conference on

Research and development in Information Retrieval, pages 765–774. ACM, 2011.

[55] M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In

Proceedings of the 14th conference on Computational linguistics-Volume 2, pages

539–545. Association for Computational Linguistics, 1992.

[56] L. Hirschman and R. Gaizauskas. Natural language question answering: the view

from here. Natural Language Engineering, 7(04):275–300, 2001.

[57] N. Houlsby and M. Ciaramita. A scalable gibbs sampler for probabilistic entity

linking. In Advances in Information Retrieval, pages 335–346. Springer, 2014.

[58] J. Hu, G. Wang, F. Lochovsky, J.-t. Sun, and Z. Chen. Understanding user’s

query intent with wikipedia. In Proceedings of the 18th international conference

on World wide web, pages 471–480. ACM, 2009.

[59] M. Hu, A. Sun, and E.-P. Lim. Comments-oriented blog summarization by sentence

extraction. In Proceedings of the sixteenth ACM conference on Conference on

information and knowledge management, pages 901–904. ACM, 2007.

Bibliography 61

[60] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques.

ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[61] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query substitutions.

In Proceedings of the 15th international conference on World Wide Web, pages

387–396. ACM, 2006.

[62] D. Jurafsky and J. H. Martin. Speech & language processing. Pearson Education

India, 2000.

[63] M. K̊agebäck, O. Mogren, N. Tahmasebi, and D. Dubhashi. Extractive summa-

rization using continuous vector space models. In Proceedings of the 2nd Workshop

on Continuous Vector Space Models and their Compositionality (CVSC)@ EACL,

pages 31–39, 2014.

[64] M. Kaszkiel and J. Zobel. Passage retrieval revisited. In ACM SIGIR Forum,

volume 31, pages 178–185. ACM, 1997.

[65] M. Kaszkiel and J. Zobel. Effective ranking with arbitrary passages. Journal of the

American Society for Information Science and Technology, 52(4):344–364, 2001.

[66] K. Knight and D. Marcu. Statistics-based summarization-step one: Sentence com-

pression. In AAAI/IAAI, pages 703–710, 2000.

[67] R. Kop. The unexpected connection: Serendipity and human mediation in net-

worked learning. Educational Technology & Society, 15(2):2–11, 2012.

[68] L.-W. Ku, L.-Y. Lee, T.-H. Wu, and H.-H. Chen. Major topic detection and

its application to opinion summarization. In Proceedings of the 28th annual in-

ternational ACM SIGIR conference on Research and development in information

retrieval, pages 627–628. ACM, 2005.

[69] S. Kulkarni, A. Singh, G. Ramakrishnan, and S. Chakrabarti. Collective annota-

tion of wikipedia entities in web text. In Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 457–466.

ACM, 2009.

[70] G. G. Lee, J. Seo, S. Lee, H. Jung, B.-H. Cho, C. Lee, B.-K. Kwak, J. Cha, D. Kim,

J. An, et al. Siteq: Engineering high performance qa system using lexico-semantic

pattern matching and shallow nlp. In TREC, 2001.

[71] H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Surdeanu, and D. Jurafsky. Stan-

ford’s multi-pass sieve coreference resolution system at the conll-2011 shared task.

In Proceedings of the Fifteenth Conference on Computational Natural Language

Bibliography 62

Learning: Shared Task, pages 28–34. Association for Computational Linguistics,

2011.

[72] W. Lehnert, C. Cardie, D. Fisher, E. Riloff, and R. Williams. University of mas-

sachusetts: Description of the circus system as used for muc-3. In Proceedings

of the 3rd conference on Message understanding, pages 223–233. Association for

Computational Linguistics, 1991.

[73] X. Li and D. Roth. Learning question classifiers. In Proceedings of the 19th inter-

national conference on Computational linguistics-Volume 1, pages 1–7. Association

for Computational Linguistics, 2002.

[74] X. Li, Y.-Y. Wang, and A. Acero. Learning query intent from regularized click

graphs. In Proceedings of the 31st annual international ACM SIGIR conference on

Research and development in information retrieval, pages 339–346. ACM, 2008.

[75] D. Lin and P. Pantel. Discovery of inference rules for question-answering. Natural

Language Engineering, 7(04):343–360, 2001.

[76] T. Lin, P. Pantel, M. Gamon, A. Kannan, and A. Fuxman. Active objects: Actions

for entity-centric search. In Proceedings of the 21st international conference on

World Wide Web, pages 589–598. ACM, 2012.

[77] T.-Y. Liu. Learning to rank for information retrieval. Foundations and Trends in

Information Retrieval, 3(3):225–331, 2009.

[78] V. Lopez, V. Uren, M. Sabou, and E. Motta. Is question answering fit for the

semantic web?: a survey. Semantic Web, 2(2):125–155, 2011.

[79] D. Losada. A study of statistical query expansion strategies for sentence retrieval.

In Proceedings of the SIGIR 2008 Workshop on Focused Retrieval, pages 37–44,

2008.

[80] D. E. Losada and R. T. Fernández. Highly frequent terms and sentence retrieval.

In String Processing and Information Retrieval, pages 217–228. Springer, 2007.

[81] H. Ma, C. Liu, I. King, and M. R. Lyu. Probabilistic factor models for web site rec-

ommendation. In Proceedings of the 34th international ACM SIGIR conference on

Research and development in Information Retrieval, pages 265–274. ACM, 2011.

[82] D. J. MacKay. Information theory, inference, and learning algorithms, volume 7.

Citeseer, 2003.

[83] A. Maedche and S. Staab. Ontology learning for the semantic web. IEEE Intelli-

gent systems, 16(2):72–79, 2001.

Bibliography 63

[84] E. Meij, M. Bron, L. Hollink, B. Huurnink, and M. De Rijke. Learning semantic

query suggestions. Springer, 2009.

[85] E. Meij, W. Weerkamp, and M. de Rijke. Adding semantics to microblog posts.

In Proceedings of the fifth ACM international conference on Web search and data

mining, pages 563–572. ACM, 2012.

[86] D. Metzler and W. B. Croft. Linear feature-based models for information retrieval.

Information Retrieval, 10(3):257–274, 2007.

[87] R. Mihalcea and A. Csomai. Wikify!: linking documents to encyclopedic knowl-

edge. In Proceedings of the sixteenth ACM conference on Conference on informa-

tion and knowledge management, pages 233–242. ACM, 2007.

[88] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[89] T. Mikolov, Q. V. Le, and I. Sutskever. Exploiting similarities among languages

for machine translation. arXiv preprint arXiv:1309.4168, 2013.

[90] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed

representations of words and phrases and their compositionality. In Advances in

Neural Information Processing Systems, pages 3111–3119, 2013.

[91] D. Milne and I. H. Witten. Learning to link with wikipedia. In Proceedings of the

17th ACM conference on Information and knowledge management, pages 509–518.

ACM, 2008.

[92] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision for relation

extraction without labeled data. In Proceedings of the Joint Conference of the

47th Annual Meeting of the ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP: Volume 2-Volume 2, pages 1003–

1011. Association for Computational Linguistics, 2009.

[93] A. Mohan, Z. Chen, and K. Q. Weinberger. Web-search ranking with initialized

gradient boosted regression trees. In Yahoo! Learning to Rank Challenge, pages

77–89, 2011.

[94] V. Murdock and W. B. Croft. A translation model for sentence retrieval. In Pro-

ceedings of the conference on Human Language Technology and Empirical Methods

in Natural Language Processing, pages 684–691. Association for Computational

Linguistics, 2005.

[95] V. G. Murdock. Aspects of sentence retrieval. PhD thesis, University of Mas-

sachusetts Amherst, 2006.

Bibliography 64

[96] R. Nallapati. Discriminative models for information retrieval. In Proceedings of the

27th annual international ACM SIGIR conference on Research and development

in information retrieval, pages 64–71. ACM, 2004.

[97] R. Neumayer, K. Balog, and K. Nørv̊ag. On the modeling of entities for ad-hoc

entity search in the web of data. In Advances in Information Retrieval, pages

133–145. Springer, 2012.

[98] J. Otterbacher, G. Erkan, and D. R. Radev. Using random walks for question-

focused sentence retrieval. In Proceedings of the conference on Human Language

Technology and Empirical Methods in Natural Language Processing, pages 915–

922. Association for Computational Linguistics, 2005.

[99] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:

Bringing order to the web. 1999.

[100] A. Pilz and G. Paaß. From names to entities using thematic context distance. In

Proceedings of the 20th ACM international conference on Information and knowl-

edge management, pages 857–866. ACM, 2011.

[101] R. L. Plackett. The analysis of permutations. Applied Statistics, pages 193–202,

1975.

[102] J. M. Ponte and W. B. Croft. A language modeling approach to information

retrieval. In Proceedings of the 21st annual international ACM SIGIR conference

on Research and development in information retrieval, pages 275–281. ACM, 1998.

[103] J. Pound, A. K. Hudek, I. F. Ilyas, and G. Weddell. Interpreting keyword queries

over web knowledge bases. In Proceedings of the 21st ACM international conference

on Information and knowledge management, pages 305–314. ACM, 2012.

[104] C. Quoc and V. Le. Learning to rank with nonsmooth cost functions. NIPS’07,

19:193, 2007.

[105] F. Radlinski, M. Szummer, and N. Craswell. Inferring query intent from reformu-

lations and clicks. In Proceedings of the 19th international conference on World

wide web, pages 1171–1172. ACM, 2010.

[106] L. Ratinov, D. Roth, D. Downey, and M. Anderson. Local and global algorithms

for disambiguation to wikipedia. In Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics: Human Language Technologies-

Volume 1, pages 1375–1384. Association for Computational Linguistics, 2011.

Bibliography 65

[107] X. Ren, Y. Wang, X. Yu, J. Yan, Z. Chen, and J. Han. Heterogeneous graph-based

intent learning with queries, web pages and wikipedia concepts. In Proceedings of

the 7th ACM international conference on Web search and data mining, pages 23–

32. ACM, 2014.

[108] S. Riedel, L. Yao, A. McCallum, and B. M. Marlin. Relation extraction with

matrix factorization and universal schemas. 2013.

[109] S. Robertson and H. Zaragoza. On rank-based effectiveness measures and opti-

mization. Information Retrieval, 10(3):321–339, 2007.

[110] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gatford, et al.

Okapi at trec-3. NIST SPECIAL PUBLICATION SP, pages 109–109, 1995.

[111] B. Rozenfeld and R. Feldman. Self-supervised relation extraction from the web.

Knowledge and Information Systems, 17(1):17–33, 2008.

[112] N. Sarkas, S. Paparizos, and P. Tsaparas. Structured annotations of web queries. In

Proceedings of the 2010 ACM SIGMOD International Conference on Management

of data, pages 771–782. ACM, 2010.

[113] U. Sawant and S. Chakrabarti. Learning joint query interpretation and response

ranking. In Proceedings of the 22nd international conference on World Wide Web,

pages 1099–1110. International World Wide Web Conferences Steering Committee,

2013.

[114] Y. Shinyama and S. Sekine. Preemptive information extraction using unrestricted

relation discovery. In Proceedings of the main conference on Human Language

Technology Conference of the North American Chapter of the Association of Com-

putational Linguistics, pages 304–311. Association for Computational Linguistics,

2006.

[115] R. F. Simmons, S. Klein, and K. McConlogue. Indexing and dependency logic for

answering english questions. American Documentation, 15(3):196–204, 1964.

[116] R. Snow, D. Jurafsky, and A. Y. Ng. Learning syntactic patterns for automatic

hypernym discovery. Advances in Neural Information Processing Systems 17, 2004.

[117] R. Soricut and E. Brill. Automatic question answering using the web: Beyond the

factoid. Information Retrieval, 9(2):191–206, 2006.

[118] K. Sparck Jones, S. Walker, and S. E. Robertson. A probabilistic model of infor-

mation retrieval: development and comparative experiments: Part 1. Information

Processing & Management, 36(6):779–808, 2000.

Bibliography 66

[119] M. Surdeanu and M. Ciaramita. Robust information extraction with percep-

trons. In Proceedings of the NIST 2007 Automatic Content Extraction Workshop

(ACE07), 2007.

[120] M. Surdeanu, M. Ciaramita, and H. Zaragoza. Learning to rank answers to non-

factoid questions from web collections. Computational Linguistics, 37(2):351–383,

2011.

[121] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich part-of-

speech tagging with a cyclic dependency network. In Proceedings of the 2003

Conference of the North American Chapter of the Association for Computational

Linguistics on Human Language Technology-Volume 1, pages 173–180. Association

for Computational Linguistics, 2003.

[122] D. Vallet and H. Zaragoza. Inferring the most important types of a query: a

semantic approach. In Proceedings of the 31st annual international ACM SIGIR

conference on Research and development in information retrieval, pages 857–858.

ACM, 2008.

[123] E. M. Voorhees and D. M. Tice. The trec-8 question answering track evaluation.

In TREC, 1999.

[124] M. Wang. A survey of answer extraction techniques in factoid question answering.

In Proceedings of the Human Language Technology Conference and North Amer-

ican Chapter of the Association for Computational Linguistics (HLT-NAACL),

2006.

[125] Q. Wang, J. Kamps, G. R. Camps, M. Marx, A. Schuth, M. Theobald, S. Gurajada,

and A. Mishra. Overview of the inex 2012 linked data track. In Copyright cG2012

remains with the author/owner (s). The unreviewed pre-proceedings are collections

of work submitted before the December workshops. They are not peer reviewed,

are not quality controlled, and contain known errors in content and editing. The

proceedings, published after the Workshop, is the authoritative reference for the

work done at INEX., page 11, 2012.

[126] I. Witten and D. Milne. An effective, low-cost measure of semantic relatedness

obtained from wikipedia links. In Proceeding of AAAI Workshop on Wikipedia and

Artificial Intelligence: an Evolving Synergy, AAAI Press, Chicago, USA, pages

25–30, 2008.

[127] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao. Adapting boosting for information

retrieval measures. Information Retrieval, 13(3):254–270, 2010.

Bibliography 67

[128] J. Xu and H. Li. Adarank: a boosting algorithm for information retrieval. In

Proceedings of the 30th annual international ACM SIGIR conference on Research

and development in information retrieval, pages 391–398. ACM, 2007.

[129] X. Xue, J. Jeon, and W. B. Croft. Retrieval models for question and answer

archives. In Proceedings of the 31st annual international ACM SIGIR conference

on Research and development in information retrieval, pages 475–482. ACM, 2008.

[130] X. Yao, B. Van Durme, and P. Clark. Automatic coupling of answer extraction

and information retrieval. In ACL (2), pages 159–165, 2013.

[131] X. Yin and S. Shah. Building taxonomy of web search intents for name entity

queries. In Proceedings of the 19th international conference on World wide web,

pages 1001–1010. ACM, 2010.

[132] X. Yu, X. Ren, Y. Sun, B. Sturt, U. Khandelwal, Q. Gu, B. Norick, and J. Han.

Recommendation in heterogeneous information networks with implicit user feed-

back. In Proceedings of the 7th ACM conference on Recommender systems, pages

347–350. ACM, 2013.

[133] X. Yu, H. Ma, B.-J. P. Hsu, and J. Han. On building entity recommender sys-

tems using user click log and freebase knowledge. In Proceedings of the 7th ACM

international conference on Web search and data mining, pages 263–272. ACM,

2014.

[134] H.-J. Zeng, Q.-C. He, Z. Chen, W.-Y. Ma, and J. Ma. Learning to cluster web

search results. In Proceedings of the 27th annual international ACM SIGIR confer-

ence on Research and development in information retrieval, pages 210–217. ACM,

2004.

[135] C. Zhai and J. Lafferty. A study of smoothing methods for language models applied

to ad hoc information retrieval. In Proceedings of the 24th annual international

ACM SIGIR conference on Research and development in information retrieval,

pages 334–342. ACM, 2001.

[136] G. Zhou, M. Zhang, D. H. Ji, and Q. Zhu. Tree kernel-based relation extraction

with context-sensitive structured parse tree information. EMNLP-CoNLL 2007,

page 728, 2007.

	1 Introduction
	1.1 Research Questions
	1.2 Contributions

	2 Related work
	2.1 Semantic search
	2.2 Sentence retrieval
	2.3 Question answering
	2.4 Relation extraction
	2.5 Learning to rank
	2.5.1 Pointwise methods
	2.5.2 Pairwise methods
	2.5.3 Listwise methods

	3 Method
	3.1 Extracting sentences
	3.1.1 Sentences enrichment
	3.1.1.1 Co-reference resolution
	3.1.1.2 Entity linking

	3.2 Ranking sentences
	3.2.1 LTR framework
	3.2.2 Features
	3.2.2.1 Text features
	3.2.2.2 Entity features
	3.2.2.3 Relation features
	3.2.2.4 Source features

	4 Experimental setup
	4.1 Dataset
	4.1.1 Entity pairs
	4.1.2 Sentences preprocessing
	4.1.3 Wikipedia

	4.2 Annotations
	4.3 Evaluation metrics
	4.4 LTR algorithms

	5 Results and discussion
	5.1 Baselines
	5.2 Full machine learning model
	5.2.1 Comparison to the baselines
	5.2.2 Insights & error analysis
	5.2.3 Parameter settings

	5.3 Feature analysis
	5.3.1 Per feature type performance
	5.3.2 Per feature unit performance
	5.3.3 Features calculation cost

	5.4 Machine learning algorithms
	5.5 Comparison to a competitive system
	5.5.1 Dataset
	5.5.1.1 Entity pairs
	5.5.1.2 Annotation

	5.5.2 Results and analysis

	6 Conclusion and future work
	Bibliography

